Please wait a minute...
材料导报  2026, Vol. 40 Issue (2): 24110139-11    https://doi.org/10.11896/cldb.24110139
  金属与金属基复合材料 |
导热稀土镁合金研究进展
李坤1,2, 李瑞红1,*, 任慧平1,*, 胡文鑫2, 王海燕1, 杨正华2
1 内蒙古科技大学材料科学与工程学院,内蒙古 包头 014010
2 包头稀土研究院,内蒙古 包头 014010
Research Progress on Thermal Conductivity Rare Earth Magnesium Alloys
LI Kun1,2, LI Ruihong1,*, REN Huiping1,*, HU Wenxin2, WANG Haiyan1, YANG Zhenghua2
1 School of Materials Science and Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, Inner Mongolia, China
2 Baotou Research Institute of Rare Earths, Baotou 014010, Inner Mongolia, China
下载:  全 文 ( PDF ) ( 11438KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本文系统综述了导热稀土镁合金领域的最新研究进展,重点聚焦含La、Ce稀土元素合金体系的开发动态。通过分析稀土元素对镁合金热传导性能的作用机理,深入剖析了导热与力学性能协同强化的内在关联机制,并对现有镁合金热导率预测模型进行系统归纳。创新性提出高导热稀土镁合金多尺度设计策略:(1)通过优选固溶度较低的稀土元素(如La、Ce)作为主要合金元素,同时严格控制其他高固溶元素含量,实现晶格畸变最小化与力学性能协同提升;(2)结合热处理工艺优化第二相形貌、尺寸及分布特征,构建高效导热网络。研究表明,La、Ce稀土元素通过净化基体、调控析出相分布等机制,可显著提升镁合金热导率至20%以上。基于此提出的成分-工艺协同优化设计框架,为开发热导率超过120 W/(m·K)且抗拉强度突破250 MPa的新型高性价比稀土镁合金材料提供了理论指导。该研究对推动镁合金在电子封装、航空航天等热管理领域的工程应用具有重要参考价值。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李坤
李瑞红
任慧平
胡文鑫
王海燕
杨正华
关键词:  稀土  镁合金  热导率  固溶原子  热处理    
Abstract: This paper provides a comprehensive review of the latest research progress in the field of thermally conductive rare earth magnesium alloys, with a particular focus on the development trends of alloy systems containing La and Ce rare earth elements. By analyzing the mechanism of action of rare earth elements on the thermal conductivity of magnesium alloys, the intrinsic correlation between thermal conductivity and mechanical properties enhancement is deeply analyzed, and the existing magnesium alloy thermal conductivity prediction models are systematically summarized. An innovative multi-scale design strategy for high thermal conductivity rare earth magnesium alloys is proposed: (1) By selecting rare earth elements with lower solubility (such as La, Ce) as the main alloying elements, while strictly controlling the content of other high solubility elements, the minimization of lattice distortion and the synergistic improvement of mechanical properties are achieved; (2) Combining the optimization of heat treatment processes to tailor the morphology, size, and distribution characteristics of the second phase, an efficient thermal conduction network is constructed. The findings show that La and Ce rare earth elements can significantly enhance the thermal conductivity of magnesium alloys by more than 20% through mechanisms such as purifying the matrix and regulating the distribution of precipitated phases. The composition-process synergistic optimization design framework proposed based on this provides theoretical guidance for the development of new high-performance rare earth magnesium alloy materials with thermal conductivity exceeding 120 W/(m·K) and tensile strength exceeding 250 MPa. This research has significant reference value for promoting the engineering application of magnesium alloys in thermal management fields such as electronic packaging and aerospace.
Key words:  rare earth    magnesium alloy    thermal conductivity    solid solution atoms    heat treatment
出版日期:  2026-01-25      发布日期:  2026-01-27
ZTFLH:  TG146.22  
基金资助: 内蒙古自治区自然科学基金(2024LHMS05054);内蒙古自治区直属高校基本科研业务费(2022-153)
通讯作者:  *李瑞红,副教授,研究方向为高性能稀土镁合金的开发与应用。liruihong@imust.edu.cn;
任慧平,教授,博士研究生导师。研究方向为优势资源高性能金属材料相关机理研究与开发应用。renhuiping@sina.com   
作者简介:  李坤,高级工程师,内蒙古科技大学材料与冶金学院博士研究生,在任慧平教授、李瑞红副教授的指导下进行研究。研究方向为高性能稀土镁合金的开发与应用。
引用本文:    
李坤, 李瑞红, 任慧平, 胡文鑫, 王海燕, 杨正华. 导热稀土镁合金研究进展[J]. 材料导报, 2026, 40(2): 24110139-11.
LI Kun, LI Ruihong, REN Huiping, HU Wenxin, WANG Haiyan, YANG Zhenghua. Research Progress on Thermal Conductivity Rare Earth Magnesium Alloys. Materials Reports, 2026, 40(2): 24110139-11.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24110139  或          https://www.mater-rep.com/CN/Y2026/V40/I2/24110139
1 Zhang X. Research and analysis on heat-release technology of high-power LED array. Master’s Thesis, Zhejiang University of Technology, China, 2013(in Chinese).
张欣. 大功率LED阵列散热技术分析研究. 硕士学位论文, 浙江工业大学, 2013.
2 Xie D R. Electro-Mechanical Engineering, 1999(1), 26(in Chinese).
谢德仁. 电子机械工程, 1999(1), 26.
3 Pan H C. Research on the thermal conductivity of magnesium alloy. Master’s Thesis, Chongqing University, China, 2013 (in Chinese).
潘虎成. 镁合金导热性能的研究. 硕士学位论文, 重庆大学, 2013.
4 Yang X Y, Peng X, Song J, et al. Journal of Magnesium and Alloys, 2019, 7, 536.
5 Liu W, Zhou B, Wu G, et al. Journal of Magnesium and Alloys, 2019, 7, 597.
6 You G Q, Bai S J, Ming Y, et al. Journal of Functional Materials, 2016, 47(5), 05030(in Chinese).
游国强, 白世磊, 明玥, 等. 功能材料, 2016, 47(5), 05030.
7 Zhu W F, Luo Q, Zhang J Y, et al. Journal of Alloys and Compounds, 2018, 731, 784.
8 Jia X J. Research on microstructure and properties Mg-RE-(Al)alloy with high thermal conductivity. Master’s Thesis, Harbin Institute of Technology, China, 2017(in Chinese).
贾晓俊. 高导热高强Mg-RE-(Al)系镁合金的显微组织和性能研究. 硕士学位论文, 哈尔滨工业大学, 2017.
9 Liu Y F. Research on microstructure and properties of high strength and high thermal conductivity Mg-La-Zr/Mn Alloy. Master’s Thesis, Harbin Institute of Technology, China, 2019 (in Chinese).
刘雅菲. 高强度高导热Mg-La-Zr/Mn系合金的显微组织和性能研究. 硕士学位论文, 哈尔滨工业大学, 2019.
10 Liu Y F, Jia X J, Qiao X G, et al. Journal of Alloys and Compounds, 2019, 806, 71.
11 Xie T C. Effect of precipitates in Mg-Zn-La/Ce alloy on thermal conductivity. Master’s Thesis, Shanghai University, China, 2021 (in Chinese).
谢天赐. Mg-Zn-La/Ce合金中析出相对热导率的影响规律. 硕士学位论文, 上海大学, 2021.
12 Luo Q, Zhai C, Gu Q F, et al. Journal of Alloys and Compounds, 2020, 814, 152297.
13 Zhou X, Mo L L, Du J, et al. Journal of Materials Research and Technology, 2022, 17, 1380.
14 Zhou X, Mo L L, Du J, et al. Materials Characterization, 2022, 194, 112274.
15 Su C Y. Thermal mechanism of magnesium alloys based on solute atom and second phase. Ph. D. Thesis, Shanghai Jiao Tong University, China, 2019 (in Chinese).
苏创业. 基于固溶原子和第二相的镁合金导热机制研究. 博士学位论文, 上海交通大学, 2019.
16 Zhong L P, Peng J, Sun S, et al. Journal of Materials Science & Technology, 2017, 33, 1240.
17 Peng J, Zhong L P, Wang Y J, et al. Journal of Alloys and Compounds, 2015, 639, 556.
18 Zhong L P, Peng J, Pan F S, et al. Journal of Alloys and Compounds, 2016, 661, 402.
19 Zhong L P. Research on thermal conductivity of Mg-RE alloys and the development of high thermalconductivity of magnesium alloys. Ph. D. Thesis, Chongqing University, China, 2016 (in Chinese).
钟丽萍. 稀土镁合金导热性能及高导热镁合金研究. 博士学位论文, 重庆大学, 2016.
20 Liu H F, Taiki N, Xu C, et al. Journal of Magnesium and Alloys, DOI: 10.1016/j.jma.2024.05.022.
21 Dai X T, Ma M L, Zhang K, et al. Journal of Materials Engineering 2020, 48(11), 92(in Chinese).
代晓腾, 马鸣龙, 张奎,等. 材料工程, 2020, 48(11), 92.
22 Chen L, Lü S, Li J, et al. Journal of Magnesium and Alloys, DOI: 10.1016/j.jma.2023.03.012.
23 Tang B. Study on the preparation process of Mg-Zn-Ca-Mn-Ce alloy with high strengthand high thermal conductivity. Master’s Thesis, Xi’an Shiyou University, China, 2023(in Chinese).
唐贝. 高强高导热Mg-Zn-Ca-Mn-Ce合金制备工艺研究. 硕士学位论文, 西安石油大学, 2023.
24 Li G Q, Zhang J H, Wu R Z, et al. Journal of Materials Science and Technology, 2018, 34, 1076.
25 Li G, Zhang J, Wu R, et al Journal of Materials Science and Technology, 2018, 34, 1076.
26 Zhong L P, Peng J, Sun S, et al. Journal of Materials Science & Technology, 2017, 33, 1240.
27 Dong N N, Wang J H, Ma H B, et al. Materials Today Communications, 2021, 29, 102894.
28 Feng L Y, et al. Journal of Materials Research and Technology, 2023, 22, 2955.
29 Li Z X, Hu B, Li D J, et al. Materials Science & Engineering A, 2022, 861, 144336.
30 Hu Y K. Study of directional solidification on mechanical properties and thermal conductivity of Mg-xZn-Y alloy. Master’s Thesis, Taiyuan University of Science and Technology, China, 2017 (in Chinese).
胡延昆. 定向凝固下Mg-xZn-Y合金力学性能及导热性能研究. 硕士学位论文, 太原科技大学, 2017.
31 Rudajevová A, Buch M, Mordike B L. Journal of Alloys and Compounds, 1999, 292 27.
32 Pan H, Pan F, Yang R, et al. Journall of Materials Science, 2014, 49. 3107.
33 Chen L, Lü S L, Guo W, et al. Journal of Alloys and Compounds, 2022, 918, 165614.
34 Tomasz, Rzychon, Andrzej, et al. Defect and Diffusion Forum, 2011, 312-315, 824
35 Kielbus A, Rzychon T, Moskal G. Defect and Diffusion Forum, 2011, 312-315, 489.
36 Rudajevová A, Lukac P. Materials Science and Engineering A, 2005, 397, 16.
37 Zheng Q J, Wu J, Chen T, et al. Journal of Materials Science & Techno-logy, 2024, 175, 223.
38 Cui Y. Research on thermal conductivity of magnesium alloy based on first principles. Master’s Thesis, Shanghai Jiao Tong University, China, 2021 (in Chinese).
崔洋. 基于第一性原理的镁合金导热性能研究. 硕士学位论文, 上海交通大学, 2021
39 Gong L, Wang Y, Cheng X, et al. International Journal of Heat and Mass Transfer, 2014, 68, 295.
40 Chen H, Xie T, Liu Q, Huang Y, et al. Journal of Alloys and Compounds, 2023, 930, 167392.
41 Su C, Li D, Luo A A, et al. Journal of Alloys and Compounds, 2018, 747, 431.
42 Yao F J, Li Z X, Hu Bo, et al. Journal of Materials Research and Technology, 2024, 28, 1824.
43 Ruan K, Shi X, Guo Y, et al. Composites Communications, 2020, 22, 100518.
44 Lei L, Su Y, Yang F, et al. Journal of Materials Science and Technology, 2020, 49, 7.
45 Li J, Wang X, Qiao Y, et al. Scripta Materialia, 2015, 109, 72.
46 Wu D, Wang C, Hu X, et al. Materials & Design, 2023, 225, 111482.
47 Wang L, Li J, Bai G, et al. Composites Part A: Applied Science and Manufacturing, 2018, 113, 76.
48 Wen S, Du Y, Tan J, et al. Journal of Materials Science and Technology, 2022, 97, 123.
49 Tan J, Wen S, Liu Y, et al. International Journal of Refractory Metals & Hard Materials, 2023, 112, 106153.
50 Guo Y, Li W Q, Liu X G, et al. Journal of Alloys and Compounds, 2022, 917, 165376.
51 Wang L, Li J, Che Z, et al. Journal of Alloys and Compounds, 2018, 749, 1098.
52 Wang L, Bai G, Li N, et al. Vacuum, 2022, 202, 111133.
53 Lorenzin G, Hoque M S B, Ariosa D, et al. Acta Materialia, 2022, 240, 118315.
54 Zhu W F, Luo Q, Zhang J Y, et al. Journal of Alloys and Compounds, 2018, 731, 784.
55 Liu C, Luo Q, Gu Q F, et al. Journal of Magnesium and Alloys, 2022, 10(11), 3250.
56 Chen H C, Xu W, Luo Q, et al. Journal of Materials Science and Technology, 2022, 112, 291.
57 Zhang Q, Chen H C, Luo Q, et al. Journal of Materials Science, 2022, 57, 12, 6819.
58 Zhang S, Li Q Q, Chen H C, et al. International Journal of Minerals Metallurgy and Materials, 2022, 29(8), 1543.
59 Luo Q, Zhai C, Gu Q F, et al. Journal of Alloys and Compounds, 2020, 814, 152297.
60 Luo Q, Zhai C, Sun D K, et al. Journal of Materials Science and Technology, 2019, 35, 2115.
61 Li H X, Xu W J, Zhang Y F, et al. International Journal of Minerals, Metallurgy and Materials, 2024, 31(1), 127.
62 Huang L, Liu S H, Du Y, et al. Calphad-Computer Coupling of Phase Diagrams and Thermochemistry, 2018, 62, 99.
63 Eivani A R, Ahmed, Zhou J, et al. Metallurgical and Materials Transactions A, 2009, 40(10), 2435.
64 Zhou, X, Mo L L, Du J, et al. Journal of Materials Research and Technology, 2022, 17, 1380.
65 Zhang Q X, Tong L B, Cheng L R, et al. Journal of Rare Earths, 2015, 33(1), 70.
66 Zhang S Q, Hu L F, Jiang L Y, et al. Shanghai Metal, 2018, 40(5), 71 (in Chinese).
张书强, 胡玲飞, 姜廉瑜, 等. 上海金属, 2018, 40(5), 71.
67 Miao X W, Peng K X, Zhang J Y, et al. Shanghai Metal, 2013, 35(6), 1 (in Chinese).
苗小伟, 彭科学, 张捷宇, 等. 上海金属, 2013, 35(6), 1.
68 Xie T, Wang Y F, Liu K, et al. Shanghai Metal, 2022, 44(4), 1(in Chinese).
谢婷, 王云峰, 刘轲, 等. 上海金属, 2022, 44(4), 1.
69 Zhang H. Microstructure, mechanical properties and thermal conductivity of Mg-Sm(-Mn) alloy. Master’s Thesis, Harbin Engineering University, China, 2023(in Chinese).
张浩. Mg-Sm(-Mn)合金微观结构、力学和导热性能研究. 硕士学位论文, 哈尔滨工程大学, 2023.
70 Yuan J W, Li T, Li X G, et al. Transactions of Materials and Heat Treatment, 2012, 33(4), 27 (in Chinese).
袁家伟, 李婷, 李兴刚, 等. 材料热处理学报, 2012, 33(4), 27.
71 Mendis C L, Oh-ishi K, Ohkubo T, et al. Materials Science and Engineering A, 2012, 553, 1.
72 Rudajevová A, Stanek M, Lukáe P. Materials Science and Engineering A, 2003, 341(1-2), 152.
73 Pan H C, Pan F S, Yang R M. Journal of Materials Science, 2014, 49(8), 3107.
74 Ying T, Zheng M Y, Li Z T, et al. Journal of Alloys and Compounds, 2014, 608, 19.
75 Ying T, Zheng M Y, Li Z T, et al. Journal of Alloys and Compounds, 2015, 621, 250.
76 Ren L B. The investigation influence of microalloying effect on the microstructure evolution and mechanical properties in AZ80. Ph. D. Thesis, Southwest Jiaotong University, China, 2019 (in Chinese).
任凌宝. 微合金化对AZ80组织演化与力学性能的影响研究. 博士学位论文, 西南交通大学, 2019.
77 Guo X, Lu X W, Zhang Y, et al. Transactions of Materials and Heat Treatment, 2023, 44(1), 77 (in Chinese).
郭旭, 卢贤文, 张钰, 等. 材料热处理学报, 2023, 44(1), 77.
78 Zhang S Q, Wu G X, Zhang B. Shanghai Metal, 2019, 41(5), 36(in Chinese).
张波, 张书强, 吴广新. 上海金属, 2019, 41(5), 36.
[1] 杜泽京, 朱艳坤, 张鹏, 张哲峰. 42CrMoVRE轴承钢滚动接触疲劳行为的有限元模拟研究[J]. 材料导报, 2026, 40(2): 25010196-6.
[2] 黄海旺, 甘雪薇, 孙建平. 速生木材力学性能强化改性研究进展[J]. 材料导报, 2026, 40(2): 24120204-13.
[3] 谭会杰, 王海燕, 华连庚, 高雪云, 吕萌, 于大威, 邢磊. 稀土Ce对Fe-Ni-Al马氏体时效钢等温过程显微组织演变的影响[J]. 材料导报, 2025, 39(7): 24010236-6.
[4] 田广科, 陆中砥, 柴培钊, 王瑜, 许亿, 夏原. 重稀土晶界扩散工艺制备高矫顽力钕铁硼磁体研究进展与应用现状[J]. 材料导报, 2025, 39(6): 24040174-6.
[5] 赵伟馨, 彭孔浩, 武玥, 郭文, 高鹤然, 张凌燕, 彭微, 李淑荣, 孟佩俊. PEI-NaGdF4:Yb3+,Tm3+稀土掺杂上转换纳米材料的制备及性能[J]. 材料导报, 2025, 39(5): 24120175-7.
[6] 郑惠泽, 何建丽, 高晨鑫, 章海明, 向雨欣. WE43镁合金温热压缩下织构演变及再结晶行为[J]. 材料导报, 2025, 39(5): 24020054-7.
[7] 程东海, 张夫庭, 陶玄宇, 余超, 龚浩, 李海涛, 王德, 熊震宇. 稀土元素对钛合金激光焊接头组织及性能的影响[J]. 材料导报, 2025, 39(3): 23060020-5.
[8] 卞宏友, 柳金生, 刘伟军, 张广泰, 姚佳彬, 邢飞. 激光沉积修复GH738/K417G合金时效热处理组织性能分析[J]. 材料导报, 2025, 39(3): 23110265-6.
[9] 李东翰, 宁舒蕊, 于璐, 廖明义, 张梦霞, 尤诗博, 方庆红. 稀土催化还原体系用于遥爪型低分子量含氟聚合物端基官能化的基础研究[J]. 材料导报, 2025, 39(3): 23100154-9.
[10] 顾建, 李冬青, 刘胜春, 司佳钧. 高强铝镁硅合金线电致热影响规律及机制研究[J]. 材料导报, 2025, 39(23): 24100236-6.
[11] 秦龙, 何建丽, 董万鹏, 黄少波, 王辉, 王志海. 镁合金高温本构模型研究进展[J]. 材料导报, 2025, 39(23): 24110218-8.
[12] 巩晓乐, 赵红运, 陈吉华, 严红革. 基于生物医用镁合金的腐蚀行为及其影响因素[J]. 材料导报, 2025, 39(21): 24100045-12.
[13] 王晴晴, 李地, 周家峰, 孟维利, 朱安康, 邵静. 稀土元素掺杂在提升热电材料性能中的研究进展[J]. 材料导报, 2025, 39(20): 25070127-8.
[14] 谢苗, 付俊伟, 赵茂密, 卢照. 6xxx铝合金耐蚀性能的研究进展[J]. 材料导报, 2025, 39(20): 24100089-13.
[15] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[1] REN Weixin, CAO Shengfei, DAI Wenjie, XIE Jingli, ZHANG Qi. Progress in Research on Shear Characteristics of Buffer Materials for High-level Radioactive Waste Repositories[J]. Materials Reports, 2025, 39(23): 25010172 -11 .
[2] JIANG Yue, XIAO Mingjun. Research Progress of High-entropy Oxides in Electrode Materials for Sodium-ion Batteries[J]. Materials Reports, 2025, 39(24): 25010122 -9 .
[3] MA Shuo, JIANG Yi, GAO Xiaojian. The Influence Law and Mechanism of C-S-H Seed on the Strength of Steam Curing Cement-based Materials[J]. Materials Reports, 2025, 39(24): 24120059 -7 .
[4] HU Jianlin, ZHAO Yuxuan, ZHOU Yongxiang, LENG Faguang, DU Xiuli. Dynamic Properties of Geopolymer-Cemented Soils and Fitting Analysis of Their Dynamic Constitutive Model[J]. Materials Reports, 2025, 39(24): 25010113 -9 .
[5] . [J]. Materials Reports, 2026, 40(1): 0 .
[6] ZHANG Minxia. Experimental Study on Influencing Factors and Mechanism of Microbial Soil Improvement Effect[J]. Materials Reports, 2026, 40(1): 24120104 -8 .
[7] . [J]. Materials Reports, 2026, 40(2): 0 .
[8] QU Shaopeng, ZHANG Haiqiang, YANG Lujia, LI Xin, HE Dongyu. Research Status and Development Trends of Transport Materials for Offshore Wind to Hydrogen[J]. Materials Reports, 2026, 40(2): 25020154 -11 .
[9] YU Hao, DENG Wenjun, WANG Yongfei, LUO Dawei. Research Progress of Electrolyte for Anode-free Lithium Metal Batteries[J]. Materials Reports, 2026, 40(2): 24110166 -8 .
[10] ZHANG Ping, LU Mingtai, LU Tiantian, YUE Yinghu. Analysis of DC Aging Characteristics of Stable ZnO Varistors Based on Voronoi Network and Finite Element Simulation Model[J]. Materials Reports, 2026, 40(2): 24090232 -9 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed