Please wait a minute...
材料导报  2025, Vol. 39 Issue (23): 24110218-8    https://doi.org/10.11896/cldb.24110218
  金属与金属基复合材料 |
镁合金高温本构模型研究进展
秦龙, 何建丽*, 董万鹏, 黄少波, 王辉, 王志海
上海工程技术大学材料科学与工程学院,上海 201620
Research Progress on High-temperature Constitutive Models of Magnesium Alloys
QIN Long, HE Jianli*, DONG Wangpeng, HUANG Shaobo, WANG Hui, WANG Zhihai
School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
下载:  全 文 ( PDF ) ( 4567KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 镁合金在成形过程中易出现微裂纹、缩孔及偏析等缺陷,限制了其广泛应用。深入探究镁合金成形过程中的流变行为,即建立本构模型,是制造低成本高质量镁合金构件的基础,也能为虚拟制造的可靠性及准确性提供条件。本文系统总结了近年来适用于镁合金高温成形的本构模型,涵盖了经典本构模型(包括唯象模型和基于物理的模型如Johnson-Cook模型、Arrhenius模型和Zerilli-Armstrong模型等)、多尺度模型(晶体塑性有限元模型、相场模型及分子动力学模型等)和基于机器学习的模型(人工神经网络模型、支持向量机模型和深度学习模型等),分析了各类模型的适用性、优缺点,并展望了未来镁合金本构模型构建的发展方向,为进一步开发新的镁合金及加工工艺提供理论参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
秦龙
何建丽
董万鹏
黄少波
王辉
王志海
关键词:  镁合金  经典本构模型  多尺度本构模型  基于机器学习的本构模型  数值模拟  高温成形    
Abstract: Magnesium alloys are prone to defects such as microcracks, shrinkage porosity, and segregation during the forming process, which restricts their broader application. To address this, a comprehensive study of the rheological behavior during the forming process of magnesium alloys is crucial. Specifically, the development of constitutive models plays a key role in enabling the production of low-cost, high-quality magnesium alloy components and ensuring the reliability and accuracy of virtual manufacturing. This paper offers a thorough review of the constitutive models used in high-temperature forming of magnesium alloys in recent years, which mainly cover classical models, including both phenomenological and physics-based approaches, such as the Johnson-Cook, Arrhenius, and Zerilli-Armstrong models;multiscale models, such as crystal plasticity finite element models, phase-field models, and molecular dynamics models;and machine learning-based models, including artificial neural networks, support vector machines, and deep learning models. And also analyzes the suitability, advantages, and disadvantages of each model and anticipates future directions in the development of constitutive models for magnesium alloys, providing valuable theoretical insights for the advancement of new magnesium alloys and processing techniques.
Key words:  magnesium alloy    classical constitutive model    multiscale constitutive model    machine learning constitutive model    numerical simulation    high temperature forming
出版日期:  2025-12-10      发布日期:  2025-12-03
ZTFLH:  TG146  
基金资助: 国家自然科学面上基金(52275352);上海市Ⅲ类高峰学科——材料科学与工程(高能束智能加工与绿色制造)
通讯作者:  *何建丽,博士,上海工程技术大学材料科学与工程学院副教授、硕士研究生导师。目前的研究工作主要围绕金属材料的成形行为与过程调控展开,具体包括:材料成形性能及其过程控制研究;基于 CAD/CAE/CAM 的材料塑性成形及模具设计与优化;结构钢在高温成形过程中的断裂机理及其工程应用;塑性成形过程中宏观变形与微观组织演变的协同机制;镁合金塑性变形机理、微观组织演化规律与表面改性技术等。hejianling792@sues.edu.cn   
作者简介:  秦龙,现为上海工程技术大学材料科学与工程学院硕士研究生,在何建丽副教授和董万鹏副教授的指导下进行研究。目前主要研究领域为WE43稀土镁合金高温热成形。
引用本文:    
秦龙, 何建丽, 董万鹏, 黄少波, 王辉, 王志海. 镁合金高温本构模型研究进展[J]. 材料导报, 2025, 39(23): 24110218-8.
QIN Long, HE Jianli, DONG Wangpeng, HUANG Shaobo, WANG Hui, WANG Zhihai. Research Progress on High-temperature Constitutive Models of Magnesium Alloys. Materials Reports, 2025, 39(23): 24110218-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24110218  或          https://www.mater-rep.com/CN/Y2025/V39/I23/24110218
1 Liu B, Yang J, Zhang X Y, et al. Journal of Magnesium and Alloys, 2023, 11, 15.
2 Yang J R, Zhu Z Q, Han A J, et al. Journal of Alloys and Compounds, 2024, 1008, 176707.
3 Zhang Z, Xie J, Zhang J, et al. Journal of Magnesium and Alloys, 2024, 12(5), 1774.
4 Lei Y, Wang Z Y, Kang G Z. Journal of Magnesium and Alloys, 2023, 11(9), 3255.
5 Zhao Z Y, Wang J B, Du W B, et al. Virtual and Physical Prototyping, 2023, 18(1), 21.
6 Harikrishna K, Bhowmik A, Davidson M, et al. Journal of Materials Research and Technology, 2024, 28, 1523.
7 Wang Y T, Zeng X G, Chen H Y, et al. Results in Physics, 2021, 27, 104498.
8 Li G, Li B, Bai X Y, et al. Journal of Magnesium and Alloys, 2024, 13, 38.
9 Baydoun S, Fartas M, Fouvry S. Tribology International, 2023, 177, 107936.
10 Johnson G R, Cook W H. In:Proceedings 7th international symposium on ballistics. The Hague, 1983, pp. 541.
11 Murugesan M, Yu J H, Chung W, et al. Materials (Basel), 2023, 16(14), 5088.
12 Wang Y J, Zhou D, Zhou Y, et al. Crystals, 2021, 11(7), 754.
13 Lin Y C, Chen X M. Materials & Design, 2011, 32(4), 1733.
14 Zhang B, Shang X D, Yao S, et al. High Temperature Materials and Processes, 2019, 38, 699.
15 Meyers M A, Chen Y J, Marquis F D S, et al. Metallurgical and Materials Transactions A, 1995, 26(10), 2493.
16 Hou Q Y, Wang J T. Computational Materials Science, 2010, 50(1), 147.
17 Mirza F A, Chen D L, Li D J, et al. Journal of Rare Earths, 2013, 31(12), 1202.
18 Tang W R, Liu S M, Liu Z, et al. Materials Science and Engineering:A, 2020, 780, 139208.
19 Li Z J, Wang J G, Yan R F, et al. Journal of Materials Research and Technology, 2022, 16, 1339.
20 Sellars C, McTegart W J. Acta Metallurgica, 1966, 14, 1136.
21 Zener C, Hollomon J H. Journal of Applied Physics, 1944, 15, 22.
22 Bayat-Tork N, Mahmudi R, Hoseini-Athar M M. Journal of Materials Research and Technology, 2020, 9(6), 15346.
23 Zhang L, Wu X Y, Zang X F, et al. Materials, 2022, 15(11), 3914.
24 Liu Q B, Luan S Y, Liu X Y. Materials Today Communications, 2024, 39, 109154.
25 Li X J, Wang J H, Jiang Y T, et al. Metals, 2022, 12(9), 1431.
26 Li B, Duan Y H, Zheng S J, et al. Journal of Materials Research and Technology, 2023, 26, 9139.
27 Wang C H, Yang G Y, Ouyang S X, et al. Physica Status Solid A, 2023, 220(21), 2300434.
28 Xia X S, Zhang K, Ma M L, et al. Journal of Magnesium and Alloys, 2020, 8(3), 917.
29 Fields D S, Backofen W A. Proceeding of American Society for Testing and Materials, 1957, 57, 1259.
30 Cheng Y Q, Zhang H, Chen Z H, et al. Journal of Materials Processing Technology, 2008, 208(1-3), 29.
31 Luo R P, Huang L, Dai X, et al. Journal of Plasticity Engineering, 2015, 22(1), 82(in Chinese).
罗仁平, 黄雷, 戴儇, 等. 塑性工程学报, 2015, 22(1), 82.
32 Li Q, Jin Z Y. Forging & Stamping Technology, 2021, 46(3), 221(in Chinese).
李全, 金朝阳. 锻压技术, 2021, 46(3), 221.
33 Jia W T, Xu S, Le Q C, et al. Materials & Design, 2016, 106, 120.
34 Khan A S, Huang S. International Journal of Plasticity, 1992, 8(4), 397.
35 Khan A S, Liang R Q. International Journal of Plasticity, 2000, 16(12), 1443.
36 Farrokh B, Khan A S. International Journal of Plasticity, 2009, 25(5), 715.
37 Molinari A, Ravichandran G. Mechanics of Materials, 2005, 37(7), 737.
38 Lin Y C, Liu G. Computational Materials Science, 2010, 48(1), 54.
39 Zerilli F J, Armstrong R W. High strain rate effects on polymer, metal and ceramic matrix composites and other advanced materials:the 1995 ASME international mechanical engineering congress and exposition november 12-17, San Francisco, California, 1995.
40 Li F, Zhu C C, Li S J, et al. Journal of Materials Research and Technology, 2022, 20, 3918.
41 Sun Y, Li G, He Z, et al. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science, 2022, 236(9), 4921.
42 Jaimin A, Mahalle G, Kotkunde N, et al. Advances in Materials and Processing Technologies, 2023, 10(4), 3147.
43 Samantaray D, Mandal S, Bhaduri A K. Computational Materals Science, 2009, 47(2), 568.
44 Cao F R, Guo H Z, Guo N P, et al. Materials (Basel), 2023, 16(4), 1639.
45 Li Q, Jin C Y. The Chinese Journal of Nonferrous Metals, 2021, 31(8), 2091 (in Chinese).
李全, 金朝阳. 中国有色金属学报, 2021, 31(8), 2091.
46 Mecking H, Kocks U F. Acta Metallurgica, 1981, 29(11), 1865.
47 Afrin N, Chen D L, Cao X, et al. Scripta Materialia, 2007, 57, 1004.
48 Kreyca J, Kozeschnik E. International Journal of Plasticity, 2018, 103, 67.
49 Mishra S, Khan F, Panigrahi S K. Journal of Magnesium and Alloys, 2022, 10(9), 2546.
50 Horstemeyer M F. In:Integrated Computational Materials Engineering (ICME) for metals:using multiscale modeling to invigorate engineering design with science. Metals & Materials Society, United States, 2012, pp. 1.
51 Kocks U F. Metallurgical Transactions, 1970, 1, 1121.
52 Follansbee P S, Kocks U F. Acta Metallurgica, 1988, 36(1), 81.
53 Follansbee P S. In:Recent results and continued development of the MTS (mechanical threshold stress) model. United States, 1988, pp. 1.
54 Puchi-Cabrera E S. Metallurgical and Materials Transactions A, 2003, 34, 2837.
55 Naghdi F, Mahmudi R, Kang J K, et al. Materials Science and Enginee-ring:A, 2017, 696, 536.
56 Xu J B, Holmedal B, Hopperstad O S, et al. International Journal of Plasticity, 2022, 151, 103215.
57 Wang L H, Yang B, Li Z Y. Transactions of the Indian Institute of Metals, 2021, 74(11), 2801.
58 Zhu H, Ou H G. Materials Science and Engineering:A, 2022, 832, 142473.
59 Jia X D, Hao K M, Luo Z, et al. Metals, 2022, 12(12), 2077.
60 Taylor G I. Proceedings of the Royal Society of London Series A, Containing Papers of a Mathematical and Physical Character, 1934, 145(855), 362.
61 Schmid E, Boas W. Kristallplastizitat. Struktur und eigenschaften der materie in einzeldarstellungen, Germany, 1935, pp. 15.
62 Hill R, Rice J R. Journal of the Mechanics and Physics of Solids, 1972, 20(6), 401.
63 Feather W G, Savage D J, Knezevic M. International Journal of Plasticity, 2021, 143, 103031.
64 Bong H J, Lee J, Hu X H, et al. International Journal of Plasticity, 2020, 126, 102630.
65 Yaghoobi M, Chen Z, Sundararaghavan V, et al. Integrating Materials and Manufacturing Innovation, 2021, 10, 488.
66 Wang Y B, Zhang Y, Liu X T, et al. Crystals, 2022, 12(9), 1305.
67 Zhu N Y, Sun C Y, Li Y L, et al. Computational Materials Science, 2021, 200, 110858.
68 Cai Y, Sun C Y, Li Y L, et al. International Journal of Plasticity, 2020, 133, 102773.
69 Wu Y, Luo Q, Qin E W. Materials Today Communications, 2020, 22, 100790.
70 Yang Q, Xue C, Chu Z. et al. Applied Physics A, 2021, 127, 482.
71 Wei Q M, Ramesh K T, Hufnagel T C, et al. Mechanics of Materials, 2021, 163, 104084.
72 Li G, Li B, Bai X Y, et al. Journal of Magnesium and Alloys, 2024, 12(10), 3898.
73 Wu Z, Li Q A, Chen X Y, et al. Chinese Journal of Engineering, 2024, 46(10), 1797(in Chinese).
吴峥, 李全安, 陈晓亚, 等. 工程科学学报, 2024, 46(10), 1797.
74 Wang T, Chen Y Z, Ouyang B, et al. Materials Science and Enginee-ring:A, 2021, 816, 141259.
75 Mishra S K, Brahma A, Dutta K. Sādhanā, 2021, 46, 139.
76 Mokhtari M A, Nikzad M H. Materials Today Communications, 2024, 40, 109476.
77 Gurgenc T, Altay O, Ulas M, et al. Journal of Applied Physics, 2020, 127(18), 185103.
78 Liu Y F, Yang T, Liu Q B, et al. Journal of Materials Science, 2024, 59, 8492.
79 Li N, Zhao S, Zhang Z. In:2021 IEEE 6th International Conference on Big Data Analytics. Xiamen, 2021, pp. 51.
80 Moses A, Chen D, Wan P, et al. Materials Today Communications, 2023, 37, 107285.
81 Moses A, Gui Y, Chen B Z, et al. Mechanics of Materials, 2024, 199, 105168.
[1] 王耀, 郑新颜, 黄伟, 吴应雄, 黄雅莹, 张恒春, 张峰. 超高性能混凝土-花岗岩石材界面的抗剪性能研究[J]. 材料导报, 2025, 39(6): 24010107-10.
[2] 汪依宁, 陈东东, 肖守讷, 王明猛, 何子坤. 湿热老化环境下碳纤维增强树脂基复合材料力学性能退化机制及性能预测[J]. 材料导报, 2025, 39(6): 23110140-8.
[3] 郑惠泽, 何建丽, 高晨鑫, 章海明, 向雨欣. WE43镁合金温热压缩下织构演变及再结晶行为[J]. 材料导报, 2025, 39(5): 24020054-7.
[4] 李雷, 孙东旭, 柴玉莹, 谢飞, 吴明. 剥离涂层下含缺陷管道腐蚀规律的瞬态数值模拟研究[J]. 材料导报, 2025, 39(5): 23010094-9.
[5] 马骏杰, 冯治国, 康分行, 刘勇. 基于硬度的TA1薄壁圆管钉套本构模型研究[J]. 材料导报, 2025, 39(23): 24090094-8.
[6] 巩晓乐, 赵红运, 陈吉华, 严红革. 基于生物医用镁合金的腐蚀行为及其影响因素[J]. 材料导报, 2025, 39(21): 24100045-12.
[7] 宫晓威, 常庆明, 常佳琦, 鲍思前. 平面流铸制备Fe-3%Si硅钢微观组织的数值模拟[J]. 材料导报, 2025, 39(2): 23090214-7.
[8] 江亦然, 张东桥, 钱应平, 王腾强. 带槽高强钢板感应加热工艺的数值模拟与实验验证[J]. 材料导报, 2025, 39(19): 24080111-8.
[9] 陈学烨, 杨斌, 陈志, 苏菁. 隔热涂层表面高温气流冲击效应的3D数值模拟[J]. 材料导报, 2025, 39(18): 24080110-6.
[10] 杨雨, 黄斌, 黄伟, 龚明子, 潘阿馨, 陈庆丰, 陈宝春, 韦建刚. UHPC中纤维间距折减效应试验与模拟研究[J]. 材料导报, 2025, 39(14): 24070154-8.
[11] 汪宙, 陈爽, 马宗涛, 张天豪, 李继文, 晁霞. 非均衡底吹对铁碳熔池废钢熔化行为影响的模拟研究[J]. 材料导报, 2025, 39(14): 24060048-8.
[12] 赵卫平, 刘英健, 生兆川, 程赛, 徐旸. 三维细观早龄期混凝土导热性能数值模拟[J]. 材料导报, 2025, 39(10): 24040083-10.
[13] 郭鑫鑫, 魏正英, 张永恒, 张帅锋. 电弧增材制造传热传质数值模拟技术综述[J]. 材料导报, 2024, 38(9): 22090175-7.
[14] 牛克心, 余为, 郝颖. 通孔球壳胞元结构压缩力学性能[J]. 材料导报, 2024, 38(9): 22100287-6.
[15] 金浏, 张晓旺, 郭莉, 吴洁琼, 杜修力. 加载速率对锈蚀钢筋与混凝土粘结性能的影响[J]. 材料导报, 2024, 38(8): 22100011-9.
[1] JIN Qinglin, WANG Yang, CAO Lei, SONG Qunling. Effect of Nitriding in Mushy Zone on the Nitrogen Content and Solidification Transformation of Cr10Mn9Ni0.7 Alloy[J]. Materials Reports, 2018, 32(4): 579 -583 .
[2] WANG Shengmin, ZHAO Xiaojun, HE Mingyi. Research Status and Development of Mechanical Plating[J]. Materials Reports, 2017, 31(5): 117 -122 .
[3] HE Yuandong, SUN Changzhen, MAO Weiguo, MAO Yiqi, ZHANG Honglong, CHEN Yanfei, PEI Yongmao, FANG Daining. Measurement of Transverse Piezoelectric Coefficients of Pb(Zr0.52Ti0.48)O3 Thin Films by a Mechano-electrical Multiphysics Coupling, Bulge Test Method[J]. Materials Reports, 2017, 31(15): 139 -144 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[6] QI Yaping, LUO Faliang, WANG Kezhi, SHEN Zhiyuan, WU Xuejian, WANG Diran. Effect of TMC-300 on the Performance of PLLA/PPC Alloy[J]. Materials Reports, 2018, 32(10): 1672 -1677 .
[7] DU Min, SONG Dian, XIE Ling, ZHOU Yuxiang, LI Desheng, ZHU Jixin. Electrospinning in Rechargeable Ion Batteries for High Efficient Energy Storage[J]. Materials Reports, 2018, 32(19): 3281 -3294 .
[8] LIU Xiao, XU Qian, LAI Guanghong, GUAN Jianan, XIA Chunlei, WANG Ziming, CUI Suping. Application Performances and Mechanism of Polycarboxylic Acid in Different Comb-bonded Structures in High-performance Concrete[J]. Materials Reports, 2018, 32(22): 4011 -4015 .
[9] ZHANG Di, YANG Di, XU Cui, ZHOU Riyu, LI Hao, LI Jing, WANG Peng. Study on Mechanism of Highly Effective Adsorption of Bisphenol F by Reduced Graphene Oxide[J]. Materials Reports, 2019, 33(6): 954 -959 .
[10] LIU Hongyin, YANG Hongyu, CHEN Mingfeng. Impact of Isocyanate Index on Flame Retardancy, Thermal Stability andCombustion Behaviors of Rigid Polyurethane Foam[J]. Materials Reports, 2019, 33(12): 2071 -2075 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed