Please wait a minute...
材料导报  2025, Vol. 39 Issue (23): 24090094-8    https://doi.org/10.11896/cldb.24090094
  金属与金属基复合材料 |
基于硬度的TA1薄壁圆管钉套本构模型研究
马骏杰1, 冯治国1,2,*, 康分行1, 刘勇1
1 贵州大学机械工程学院,贵阳 550025
2 贵州大学贵州省特色装备及制造技术重点实验室,贵阳 550025
Research on the Constitutive Model of TA1 Thin-Walled Round Tube Nail Sleeve Based on Hardness
MA Junjie1, FENG Zhiguo1,2,*, KANG Fenhang1, LIU Yong1
1 College of Mechanical Engineering, Guizhou University, Guiyang 550025, China
2 Guizhou Key Laboratory of Special Equipment and Manufacturing Technology, Guizhou University, Guiyang 550025, China
下载:  全 文 ( PDF ) ( 18065KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 TA1薄壁圆管钉套因其优异的力学性能在航空航天领域广泛应用。钉套在轴向方向呈梯度硬度分布,常规的本构模型无法准确预测其力学行为。本工作旨在构建一种基于硬度的TA1 Johnon-Cook(J-C)改进本构模型和人工神经网络(ANN)本构模型,以支持薄壁圆管钉套的数值模拟。对不同硬度的TA1进行了准静态和动态压缩试验,研究了硬度和应变率对TA1力学性能的影响。在试验基础上构建了基于硬度的改进J-C本构模型和ANN本构模型,并对两种模型进行了准确性分析。通过VUMAT和VUHARD用户子程序将两种本构模型分别嵌入ABAQUS中,实现了薄壁圆管钉套压缩的数值模拟。结果表明,两种本构模型均有较好的预测精度。改进J-C本构模型均方根误差为38.54 MPa,平均绝对误差为4.07%;ANN本构模型均方根误差为2.78 MPa,平均绝对误差为0.37%。在数值模拟方面,ANN本构模型的模拟结果与试验结果保持了更好的一致性,模拟与试验的相对误差保持在5%以内,能更准确地描述薄壁圆管钉套压缩过程中的力学行为。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马骏杰
冯治国
康分行
刘勇
关键词:  TA1钛合金  薄壁圆管钉套  本构模型  神经网络  数值模拟    
Abstract: TA1 thin-walled round tube nail sleeve are widely used in aerospacefield due to their excellent mechanical properties. The nail sleeve has a gradient hardness distribution in the axial direction, so the conventional constitutive models cannot accurately predict its mechanical behavior. For this propose, a hardness-based TA1 Johnson-Cook (J-C) improved constitutive model and an artificial neural network (ANN) constitutive model was constructed to support the numerical simulation of thin-walled round tube nail sleeve. The quasi-static and dynamic compression tests of TA1 with different hardness were carried out to study the effects of hardness and strain rate on the mechanical properties of TA1. The improved J-C constitutive model and ANN constitutive model based on hardness were constructed on the basis of experiments, and the accuracy of the two models was analyzed. The numerical simulation of nail sleeve compression of thin-walled round tubes was achieved by embedding the two principal models into ABAQUS through the VUMAT and VUHARD user subroutines, respectively. The results show that both constitutive models have good prediction accuracy. The root-mean-square error of the improved J-C constitutive model is 38.54 MPa, and the average absolute error is 4.07%. While the root-mean-square error of the ANN constitutive model is 2.78 MPa, and the average absolute error is 0.37%. In terms of numerical simulation, the simulation results of the ANN constitutive model maintain a better consistency with the test results, and the relative error between simulation and test keeps within 5%, which can more accurately describe the mechanical behavior of the thin-walled round tube nail sleeve during compression.
Key words:  TA1 titanium alloy    thin-walled round tube nail sleeve    constitutive model    neural network    numerical simulation
出版日期:  2025-12-10      发布日期:  2025-12-03
ZTFLH:  TG146.23  
基金资助: 国家自然科学基金(52165042);贵州省优秀青年人才项目(黔科合平台人才[2021]5617 号);贵阳市科技人才培养项目(筑科合同[2021] 43-1 号);贵州省科技计划项目(黔科合支撑[2023]一般 308);贵大人基合字(2022)09 号
通讯作者:  *冯治国,博士,贵州大学机械工程学院教授、博士研究生导师。目前主要从事机器人技术及应用、运动控制技术、材料加工的研究工作。zgfeng@gzu.edu.cn   
作者简介:  马骏杰,贵州大学机械工程学院硕士研究生,在冯治国教授的指导下进行研究。目前主要研究领域为金属的塑性变形。
引用本文:    
马骏杰, 冯治国, 康分行, 刘勇. 基于硬度的TA1薄壁圆管钉套本构模型研究[J]. 材料导报, 2025, 39(23): 24090094-8.
MA Junjie, FENG Zhiguo, KANG Fenhang, LIU Yong. Research on the Constitutive Model of TA1 Thin-Walled Round Tube Nail Sleeve Based on Hardness. Materials Reports, 2025, 39(23): 24090094-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24090094  或          https://www.mater-rep.com/CN/Y2025/V39/I23/24090094
1 Zhang X, Li C. Materials Science and Engineering:A, 2017, 679, 511.
2 Zheng Q, Shimizu T, Shiratori T, et al. Materials & Design, 2014, 63, 389.
3 Shen C, Feng Q, Wang S Q, et al. Materials Reports, 2021, 35(S2), 452(in Chinese)
沈楚, 冯庆, 王思琦, 等. 材料导报, 2021, 35(S2), 452.
4 Zhao L, He X C, Zhang X L, et al. Materials Reports, 2018, 32(20), 3579(in Chinese)
赵伦, 何晓聪, 张先炼, 等. 材料导报, 2018, 32(20), 3579.
5 Feng J. Composite Structures, 2024, 337, 118023.
6 Kelly B, Costello C. Journal of Materials Processing Technology, 2004, 153, 74.
7 Wang Y, Li Y. Fatigue & Fracture of Engineering Materials & Structures, 2024, 7, 2537.
8 Zhao J, Peng Y, Su W, et al. Journal of Constructional Steel Research, 2021, 179, 106558.
9 Jia Z, Guan B, Zang Y, et al. Materials Science and Engineering: A, 2021, 820, 141565.
10 Liu S F, Qu Y H, Wang C L, et al. Materials Reports, 2018, 32(13), 2241(in Chinese)
刘少飞, 屈银虎, 王崇楼, 等. 材料导报, 2018, 32(13), 2241.
11 Jiang T, Zhou W, Tang J, et al. International Journal of Impact Engineering, 2022, 166, 104235.
12 Yang L Y, Duan C Z, Li X R, et al. Journal of Materials Engineering and Performance, 2022, 166, 104235
13 Tao L, Feng Z, Jiang Y, et al. Materials Today Communications, 2024, 39, 109331.
14 Liu X Y, Li S K, Yang X R. Rare Metal Materials and Engineering, 2024, 53(2), 409(in Chinese).
刘晓燕, 李帅康, 杨西荣. 稀有金属材料与工程, 2024, 53(2), 409.
15 Davies E D H, Hunter S C. Journal of the Mechanics and Physics of Solids, 1963, 11(3), 155.
16 Tsukamoto G, Kunieda T, Mitsuhara M, et al. Materials Science and Engineering, A, 2022, 840, 142907.
17 Guo W C, Wu J, Guo M X, et al. Materials Reports, 2025, 39(4), 204(in Chinese)
郭维诚, 吴杰, 郭淼现, 等. 材料导报, 2025, 39(4), 204.
18 Ren J S, Li X L, Xiao S T, et al. Materials Reports, 2020, 34(S1), 283
任军帅, 李欣琳, 肖松涛, 等. 材料导报, 2020, 34(S1), 283.
19 Zhang H X, Fang G. Forging & Stamping Technology, 2024(7), 1(in Chinese)
张韩旭, 方刚. 锻压技术, 2024(7), 1.
20 Pantalé O, Tize Mha P, Tongne A. Finite Elements in Analysis and Design, 2022, 198, 103647.
[1] 段明翰, 覃源, 李阳, 耿凯强. 寒冷地区腈纶纤维混凝土力学性能及多层感知器神经网络预测[J]. 材料导报, 2025, 39(6): 23110143-9.
[2] 王耀, 郑新颜, 黄伟, 吴应雄, 黄雅莹, 张恒春, 张峰. 超高性能混凝土-花岗岩石材界面的抗剪性能研究[J]. 材料导报, 2025, 39(6): 24010107-10.
[3] 汪依宁, 陈东东, 肖守讷, 王明猛, 何子坤. 湿热老化环境下碳纤维增强树脂基复合材料力学性能退化机制及性能预测[J]. 材料导报, 2025, 39(6): 23110140-8.
[4] 李雷, 孙东旭, 柴玉莹, 谢飞, 吴明. 剥离涂层下含缺陷管道腐蚀规律的瞬态数值模拟研究[J]. 材料导报, 2025, 39(5): 23010094-9.
[5] 雷经发, 赵晨霞, 刘涛, 沈朝阳, 李思悦. 激光熔覆Inconel 625合金高温高应变率下的力学行为及本构模型[J]. 材料导报, 2025, 39(4): 23120263-7.
[6] 郭维诚, 吴杰, 郭淼现, 孙启梦. SiCp/Al超低温材料流动行为和本构模型构建[J]. 材料导报, 2025, 39(4): 23110133-8.
[7] 霍海峰, 贾汶韬, 孙涛, 成鑫磊, 陈庆炜, 徐晖, 李涛. 压实雪抗压强度变化规律及烧结机制试验研究[J]. 材料导报, 2025, 39(23): 24120101-8.
[8] 万思宇, 苏三庆, 曹振, 王照耀. 混杂纤维高强高延性水泥基复合材料弯曲性能及预测模型[J]. 材料导报, 2025, 39(23): 24120022-10.
[9] 孙丽, 蓝世航, 王超. 聚丙烯纤维增韧海砂珊瑚混凝土单轴压缩应力-应变本构关系及微观结构[J]. 材料导报, 2025, 39(23): 24070114-9.
[10] 秦龙, 何建丽, 董万鹏, 黄少波, 王辉, 王志海. 镁合金高温本构模型研究进展[J]. 材料导报, 2025, 39(23): 24110218-8.
[11] 沙东, 李根, 王芳, 唐民, 刘乙丁. 基于BBR试验的高模量沥青低温本构模型的建立与评价[J]. 材料导报, 2025, 39(22): 24080054-7.
[12] 殷溥隆, 李艳, 田勇, 翟越, 李乐, 何峻宇, 贾宇, 程禹翰. 冻融循环作用下黄土基水泥土三轴压缩力学特性及本构模型研究[J]. 材料导报, 2025, 39(21): 24100069-8.
[13] 敬彬, 胡文军, 陶俊林. Taylor撞击实验及其应用研究进展[J]. 材料导报, 2025, 39(2): 23100210-10.
[14] 宫晓威, 常庆明, 常佳琦, 鲍思前. 平面流铸制备Fe-3%Si硅钢微观组织的数值模拟[J]. 材料导报, 2025, 39(2): 23090214-7.
[15] 李冲, 晏阳阳, 杨祯彧, 宋德军, 胡伟民, 杨胜利, 田世伟, 江海涛. TA24合金多道次热变形行为及管材制备仿真[J]. 材料导报, 2025, 39(2): 23120078-7.
[1] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[2] LIU Shuaiyang, WANG Aiqin, LYU Shijing, TIAN Hanwei. Interfacial Properties and Further Processing of Cu/Al Laminated Composite: a Review[J]. Materials Reports, 2018, 32(5): 828 -835 .
[3] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[4] CAO Xiuzhong, ZHAO Bing, HAN Xiuquan, HOU Hongliang, QU Haitao. Research on Deformation Mechanism of SiC Fiber Reinforced Titanium Matrix Composites Subjected to High Temperature Axial Tension[J]. Materials Reports, 2017, 31(8): 88 -93 .
[5] ZHANG Jiaqing, ZHANG Bosi, WANG Liufang, FAN Minghao, XIE Hui, LI Wei. The State of the Art of Combustion Behavior of Live Wires and Cables[J]. Materials Reports, 2017, 31(15): 1 -9 .
[6] LI Xueyun, WANG Hezhong. Optimization and Characterization of TEMPO-Mediated Oxidization of Nanochitin Whiskers[J]. Materials Reports, 2018, 32(10): 1597 -1601 .
[7] ZHAO Qingchen, WANG Jinlong, ZHANG Yuanliang, SHEN Yihong, LIU Shujie. Fatigue Behavior and Fatigue Life for FV520B-I at Different Loading Frequencies[J]. Materials Reports, 2018, 32(16): 2837 -2841 .
[8] ZHOU Chao, WANG Hui, OUYANG Liuzhang, ZHU Min. The State of the Art of Hydrogen Storage Materials for High-pressure Hybrid Hydrogen Vessel[J]. Materials Reports, 2019, 33(1): 117 -126 .
[9] WANG Huifen, LIU Gang, CAO Kangli, YANG Biqi, XU Jun, LAN Shaofei, ZHANG Lixin. Development Status of Carbon Nanotube Materials and Their Application Prospects in Spacecraft[J]. Materials Reports, 2019, 33(z1): 78 -83 .
[10] LEI Lin, YANG Qingbo, ZHANG Zhiqing, FAN Xiangze, LI Xu, YANG Mou, DENG Zanhui. Multi-pass Compression Behavior and Microstructure Evolution of AA2195 Aluminum Lithium Alloy[J]. Materials Reports, 2019, 33(z1): 348 -352 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed