Please wait a minute...
材料导报  2025, Vol. 39 Issue (21): 24100069-8    https://doi.org/10.11896/cldb.24100069
  无机非金属及其复合材料 |
冻融循环作用下黄土基水泥土三轴压缩力学特性及本构模型研究
殷溥隆1, 李艳1,*, 田勇2, 翟越1, 李乐1, 何峻宇1, 贾宇1, 程禹翰1,3
1 长安大学地质工程与测绘学院,西安 710064
2 中建三局集团有限公司,西安 710075
3 中交第一公路勘察设计研究院有限公司,西安 710068
Study on Triaxial Compressive Mechanical Properties and Constitutive Model of Loess-based Cemented Soil Under Freeze-Thaw Cycle
YIN Pulong1, LI Yan1,*, TIAN Yong2, ZHAI Yue1, LI Le1, HE Junyu1, JIA Yu1, CHENG Yuhan1,3
1 College of Geology Engineering and Geomatics, Chang’an University, Xi’an 710064, China
2 China Construction Third Bureau Group Co., Ltd., Xi’an 710075, China
3 CCCC First Highway Consultants Co., Ltd., Xi’an 710068, China
下载:  全 文 ( PDF ) ( 28217KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 黄土在我国西北地区广泛分布,黄土基水泥土是我国绿色施工与减碳目标下固废资源化的新型水泥土。为研究冻融循环作用后黄土基水泥土力学性能的劣化规律,针对不同冻融循条件下的黄土基水泥土开展三轴压缩试验,分析冻融循环次数和围压的影响;利用扫描电镜和核磁共振技术,揭示黄土基水泥土的强度形成机制及冻融损伤演化机理。在此基础上,基于统计损伤力学理论,推导建立了综合考虑冻融循环作用及围压效应的黄土基水泥土三轴本构模型。研究结果表明:黄土基水泥土三轴压缩破坏模式分为“Y”型剪切破坏、类“X”共轭型压-剪切带破坏和“H”型剪切-劈裂带破坏三种类型,且随着冻融循环次数的增加,破坏性质由脆性逐渐向延性转变。冻融循环作用对黄土基水泥土内摩擦角的影响较小,主要通过劣化粘聚力降低剪切强度。冻融损伤的本质在于内部水相变作用产生的冻胀力使C-S-H凝胶的胶结力减弱,试样内部介孔和大孔数量不断增加,孔隙相互连通、扩大直至贯穿。构建的黄土基水泥土三轴损伤本构模型综合考虑了冻融循环作用和围压效应,表达式简单、参数物理意义明确,可较好地推求冻融环境下黄土基水泥土的全应力-应变曲线,并能准确地描述峰后应变软化特征。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
殷溥隆
李艳
田勇
翟越
李乐
何峻宇
贾宇
程禹翰
关键词:  黄土基水泥土  冻融循环作用  围压  力学特性  本构模型  统计损伤力学    
Abstract: Loess is widely distributed in northwest China. Loess-based cemented soil is a new type of solid waste resource under green construction and carbon reduction goal in China. In order to study the deterioration of mechanical properties of loess-based cemented soil after freeze-thaw cycles, triaxial compression tests were carried outon loess-based cemented soil under different freeze-thaw cycles to analyze the effects of freeze-thaw cycles and confining pressures on their compressive strength. Using scanning electron microscopy and nuclear magnetic resonance techniques, the formation mechanism of strength and evolution mechanism of freeze-thaw damage of loess-based cemented soil were revealed. Then based on the theory of statistical damage mechanics, a triaxial constitutive model for loess-based cemented soil was derived considering the effects of freeze-thaw cycles and confining pressure. The results show that the triaxial compression failure modes of loess-based cemented soil are divided into “Y” shear failure, “X” conjugated compression-shear zone failure and “H” shear-fracture zone failure. With the increase of freeze-thaw cycles, the failure properties gradually change from brittle to ductile. The freeze-thaw cycle mainly reduces the shear strength by deteriorating the cohesion, while has little effect on the internal friction angle of loess-based cemented soil. The essence of freeze-thaw damage is that the frost swelling force generated by the internal water phase transition weakens the cementing force of C-S-H gel, and the internal pore size increase continuously, and the internal pores of the sample are interconnected, expanded and penetrated. The triaxial damage constitutive model for loess-based cemented soil derived comprehensively considers the effects of freeze-thaw cycles and confining pressure, and its expressions are simple and its parameters have clear physical meanings, enabling a good representation of the full stress-strain curve of cemented loess under freeze-thaw conditions and accurately describing the post-peak strain softening characteristics.
Key words:  loess-based cemented soil    freeze-thaw cycles    confining pressure    mechanical property    constitutive model    statistical damage mechanics
出版日期:  2025-11-10      发布日期:  2025-11-10
ZTFLH:  TU411  
基金资助: 国家自然科学基金—联合基金项目(023A2047);咸阳市科技创新团队项目(L2023CXNLCXTD005);陕西省住建厅项目(2021-K40)
通讯作者:  *李艳,博士,长安大学地质工程与测绘学院副教授、硕士研究生导师。长期从事岩石和混凝土材料力学性能等方面的研究。1259578602@qq.com   
作者简介:  殷溥隆,长安大学地质工程与测绘学院硕士研究生,在李艳副教授的指导下进行研究。目前主要研究领域为岩土力学特性等。
引用本文:    
殷溥隆, 李艳, 田勇, 翟越, 李乐, 何峻宇, 贾宇, 程禹翰. 冻融循环作用下黄土基水泥土三轴压缩力学特性及本构模型研究[J]. 材料导报, 2025, 39(21): 24100069-8.
YIN Pulong, LI Yan, TIAN Yong, ZHAI Yue, LI Le, HE Junyu, JIA Yu, CHENG Yuhan. Study on Triaxial Compressive Mechanical Properties and Constitutive Model of Loess-based Cemented Soil Under Freeze-Thaw Cycle. Materials Reports, 2025, 39(21): 24100069-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24100069  或          https://www.mater-rep.com/CN/Y2025/V39/I21/24100069
1 Liu Z Y, Zhu S P, Zhang J C, et al. China Earthquake Engineering Journal, 2023, 45(5), 1156(in Chinese).
刘忠玉, 朱少培, 张家超, 等. 地震工程学报, 2023, 45(5), 1156.
2 Li H R, Zhao W L, Nan Z Z. Chinese Journal of Geotechnical Engineering, 2023, 45(5), 1156(in Chinese).
李宏儒, 赵伟龙, 楠钟凯. 岩土工程学报, 2023, 45(5), 106.
3 Ma D D, Ma Q Y, Huang K, et al. Chinese Journal of Geotechnical Engineering, 2021, 43(3), 572(in Chinese).
马冬冬, 马芹永, 黄坤, 等. 岩土工程学报, 2021, 43(3), 572.
4 Ding M T, Zhang F, Ling X Z, et al. Cold Regions Science and Technology, 2018, 154, 155.
5 Wang D X, Zhang Z W, Wang X Q, et al. Journal of Central South University(Science and Technology), 2022, 53(1), 306(in Chinese).
王东星, 张子伟, 王协群, 等. 中南大学学报(自然科学版), 2022, 53(1), 306.
6 Ren K, Yu Z N, Shi M Q. Journal of Railway Engineering Society, 2023, 40(7), 15(in Chinese).
任昆, 于泽宁, 石孟奇. 铁道工程学报, 2023, 40(7), 15.
7 Zhang D W, Zeng B, Liu S C, et al. China Journal of Highway and Transport, 2023, 36(10), 131(in Chinese).
章定文, 曾彪, 刘涉川, 等. 中国公路学报, 2023, 36(10), 131.
8 Zhu Z R, Zhou Y, Wu H G, et al. Journal of Railway Engineering Society, 2023, 40(5), 25(in Chinese).
朱兆荣, 周垣, 吴红刚, 等. 铁道工程学报, 2023, 40(5), 25.
9 Li Y X, Wang Q, Zhang Q C, et al. Materials Review, 2023, 37(S1), 156(in Chinese).
李雅曦, 王琴, 张秋臣, 等. 材料导报, 2023, 37(S1), 156.
10 Wang Y M, Chang L J, Li Y. Materials Reports, 2021, 35(S2), 268(in Chinese).
王一名, 常立君, 李滢. 材料导报, 2021, 35(S2), 268.
11 Xu L A, Zhang R Z, Qi C H, et al. Buildings, 2023, 13(2), 460.
12 Du J, Liu B Y, Shen T T, et al. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(2), 140(in Chinese).
杜娟, 刘冰洋, 申彤彤. 农业工程学报, 2020, 36(02), 140.
13 Zhu J F, Xu R Q, Luo Z Y, et al. Rock and Soil Mechanics, 2020, 41(7), 2224(in Chinese).
朱剑锋, 徐日庆, 罗战友, 等. 岩土力学, 2020, 41(7), 2224.
14 Zhao B Y, Huang T Z, Liu D Y, et al. Geomechanics and Engineering, 2019, 18(3), 291.
15 Xu W S, Zhang C, Li L H, et al. Engineering Journal of Wuhan University, 1:11 [2024-11-09]. http://kns.cnki.net/kcms/detail/42.1675.T.20231010.1507.002.html(in Chinese).
徐维生, 张驰, 李丽华, 等. 武汉大学学报(工学版), 1:11 [2024-11-09]. http://kns.cnki.net/kcms/detail/42.1675.T.20231010.1507.002.html.
16 Chen S L, Hou R, Ni C L, et al. Bulletin of the Chinese Ceramic Society, 2018, 37(12), 4012(in Chinese).
陈四利, 侯芮, 倪春雷, 等. 硅酸盐通报, 2018, 37(12), 4012.
17 Chen C L, Zhang D F, Dong Y Z, et al. Chinese Journal of Geotechnical Engineering, 2014, 36(7), 1195(in Chinese).
陈存礼, 张登飞, 董玉柱, 等. 岩土工程学报, 2014, 36(7), 1195.
18 Buddhima I, Thevaragavan M, Hadi K, et al. Journal of Geotechnical and Geoenvironmental Engineering, 2008, 6(837), 134.
19 Li L H, Han Q P, Yang X, et al. China Civil Engineering Journal, 2023, 56(12), 166(in Chinese).
李丽华, 韩琦培, 杨星, 等. 土木工程学报, 2023, 56(12), 166.
20 Sun M Z, Hu G J, Hu J, et al. Sustainability, 2022, 14(23), 543.
21 Vakili A. Computers and Geotechnics, 2016, 80, 261.
22 Chen H H, Zhu H H, Zhang L Y. Rock Mechanics and Rock Engineering, 2021, 54(2), 921.
23 Liu X S. International Journal of Rock Mechanics and Mining Sciences, 2016, 85, 27.
24 Niu Y Q, Hou L Z, Qin Z P, et al. Materials, 2022, 15(19), 7042.
25 Kuang Z H, Li S J, Du C X, et al. Rock and Soil Mechanics, 2022, 43(S1), 293(in Chinese).
匡智浩, 李邵军, 杜灿勋, 等. 岩土力学, 2022, 43(S1), 293.
[1] 雷经发, 赵晨霞, 刘涛, 沈朝阳, 李思悦. 激光熔覆Inconel 625合金高温高应变率下的力学行为及本构模型[J]. 材料导报, 2025, 39(4): 23120263-7.
[2] 郭维诚, 吴杰, 郭淼现, 孙启梦. SiCp/Al超低温材料流动行为和本构模型构建[J]. 材料导报, 2025, 39(4): 23110133-8.
[3] 敬彬, 胡文军, 陶俊林. Taylor撞击实验及其应用研究进展[J]. 材料导报, 2025, 39(2): 23100210-10.
[4] 李冲, 晏阳阳, 杨祯彧, 宋德军, 胡伟民, 杨胜利, 田世伟, 江海涛. TA24合金多道次热变形行为及管材制备仿真[J]. 材料导报, 2025, 39(2): 23120078-7.
[5] 杨涛, 刘章锐, 刘博, 张阳. 考虑应变幅值影响的超弹性SMA相变棘轮行为宏观唯象本构模型[J]. 材料导报, 2025, 39(17): 24050012-6.
[6] 夏军武, 朱致淳, 林俊东, 何源, 于峻, 柏建彪. BFRP约束煤矸石混凝土轴压本构模型研究[J]. 材料导报, 2025, 39(16): 24070132-6.
[7] 肖瑶, 邓华锋, 程雷, 黄小芸, 李建林. MICP增强水泥改良红层泥岩填料力学性能及作用机理[J]. 材料导报, 2025, 39(15): 24060063-8.
[8] 权文立, 黄炜, 唐达, 孙文博, 苗欣蔚, 侯莉娜. 蒸压砂加气混凝土损伤本构模型研究[J]. 材料导报, 2025, 39(14): 24050166-6.
[9] 左志东, 刘先斌, 刘吉波, 汪小锋, 陈剑斌. 汽车用2024-T351铝合金的动态力学行为各向异性[J]. 材料导报, 2024, 38(8): 22080196-9.
[10] 孙涛, 王辉, 张蕾, 刘晓英, 赵宏刚, 蒋伟, 成鑫磊, 何小涌. 基于折减因子的奥氏体不锈钢螺栓高温应力-应变模型[J]. 材料导报, 2024, 38(5): 23080049-9.
[11] 潘伶, 许冰冰, 任志英, 史林炜, 陈毅鹏. 基于金属橡胶的轻质波纹型夹层结构静态力学性能[J]. 材料导报, 2024, 38(4): 22080228-6.
[12] 张超, 潘旺, 方宏远, 王娟, 王翠霞, 杜明瑞, 赵鹏, 王磊, 王复明. 聚氨酯泡沫注浆修复材料泡孔结构特征及抗压性能研究进展[J]. 材料导报, 2024, 38(3): 22070007-14.
[13] 林海, 时花豹, 周创兵, 吕志涛. 黏土-膨润土混合土衬里的渗透特性试验研究[J]. 材料导报, 2024, 38(23): 23090001-6.
[14] 崔涛涛, 宁宝宽, 郜殿伟, 夏旭东. 混杂纤维高强轻骨料混凝土单轴受压试验研究[J]. 材料导报, 2024, 38(2): 22040204-6.
[15] 吴伟喆, 刘阳, 张艺欣, 黄建山, 闫国威. 冻融环境下FRCC孔隙结构与力学性能研究综述[J]. 材料导报, 2023, 37(S1): 23010108-12.
[1] LIU Diqiang, JIA Jiangang, GAO Changqi, WANG Jianhong. Preparation of Raney-Ni/Al2O3 Powder Composites by De-alloying of Mechanochemical Synthesized Ni2Al3/Al2O3 Powders[J]. Materials Reports, 2018, 32(6): 957 -960 .
[2] . Effect of Annealing on Crystalline Structure and Low-temperature Toughness of
Polypropylene Random Copolymer Dedicated Pipe Materials
[J]. Materials Reports, 2017, 31(4): 65 -69 .
[3] YAN Xin, HUI Xiaoyan, YAN Congxiang, AI Tao, SU Xinghua. Preparation and Visible-light Photocatalytic Activity of Graphite-like Carbon Nitride Two-dimensional Nanosheets[J]. Materials Reports, 2017, 31(9): 77 -80 .
[4] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[5] HUANG Jianfeng, WANG Caiwei, LI Jiayin, CAO Liyun, ZHU Dongyue, XI Ting. Advances in Carbon-based Anode Materials for Sodium Ion Batteries[J]. Materials Reports, 2017, 31(21): 19 -23 .
[6] WANG Bin, ZHANG Lele, DU Jinjing, ZHANG Bo, LIANG Lisi, ZHU Jun. Applying Electrothermal Reduction Method to the Preparation of V-Ti-Cr-Fe Alloys Serving as Hydrogen Storage Materials[J]. Materials Reports, 2018, 32(10): 1635 -1638 .
[7] GAO Wei, ZHAO Guangjie. Synergetic Oxidation Modification of Wooden Activated Carbon Fiber with Nitric Acid and Ceric Ammonium Nitrate[J]. Materials Reports, 2018, 32(9): 1507 -1512 .
[8] ZHANG Tiangang,SUN Ronglu,AN Tongda,ZHANG Hongwei. Comparative Study on Microstructure of Single-pass and Multitrack TC4 Laser Cladding Layer on Ti811 Surface[J]. Materials Reports, 2018, 32(12): 1983 -1987 .
[9] HAN Zhiyong, QIU Zhenzhen, SHI Wenxin. Effect of Surface Modification of Bonding Layers by High Current Pulsed Electron Beam on Thermal Shock Failure and Residual Stress of Thermal Barrier Coatings[J]. Materials Reports, 2018, 32(24): 4303 -4308 .
[10] YUAN Teng, LIANG Bin, HUANG Jiajian, YANG Zhuohong, SHAO Qinghui. Effect of Shell Thickness on Morphology and Opacity Ability of Hollow Styrene
Acrylic Latex Particles
[J]. Materials Reports, 2019, 33(4): 724 -728 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed