Please wait a minute...
材料导报  2025, Vol. 39 Issue (17): 24050012-6    https://doi.org/10.11896/cldb.24050012
  金属与金属基复合材料 |
考虑应变幅值影响的超弹性SMA相变棘轮行为宏观唯象本构模型
杨涛1,*, 刘章锐1, 刘博2, 张阳1
1 西安工程大学城市规划与市政工程学院,西安 710600
2 西安建筑科技大学土木工程学院,西安 710055
A Macroscopic Phenomenological Constitutive Model of Superelastic SMA Phase Transition Ratchet Behavior Considering the Effect of Strain Amplitude
YANG Tao1,*, LIU Zhangrui1, LIU Bo2, ZHANG Yang1
1 School of Urban Planning and Municipal Engineering, Xi'an Polytechnic University, Xi'an 710600, China
2 School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
下载:  全 文 ( PDF ) ( 11526KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为将形状记忆合金(SMA)的超弹性性能充分应用到工程实践当中,对超弹性SMA丝进行单轴循环拉伸试验,基于试验结果与广义黏塑性框架下改进的Graesser本构模型,建立了可统一SMA相变棘轮行为与稳定超弹性行为的宏观唯象本构模型。首先通过试验结果分析应变幅值与循环次数对超弹性SMA相变特征参量及耗能特性的影响规律;进一步以SMA非弹性应变的累积量为内变量并考虑马氏体硬化特征,将反映超弹性SMA特征参量的演化方程引入到改进的Graesser模型中,拓展出可统一超弹性SMA相变行为的本构模型;最后利用该本构模型对超弹性SMA单轴循环拉伸时的滞回曲线进行数值模拟,对预测结果与试验结果的滞回曲线进行比较,并评估超弹性SMA单圈能量耗散的预测误差。结果表明新模型拓宽了改进模型的适用范围,不仅能够保留原有功能,亦可精确描述变应变幅值影响下的超弹性SMA相变棘轮行为,对单圈能量耗散值预测精度较高。本工作可为工程实践中超弹性SMA耗能元件提供更完善的应用理论。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨涛
刘章锐
刘博
张阳
关键词:  形状记忆合金  超弹性  相变棘轮行为  应变幅值  Graesser本构模型    
Abstract: In order to achieve full potential of the superelastic properties of shape memory alloys (SMA) in practical engineering applications, this work carried out uniaxial cyclic tensile tests were carried out on superelastic SMA filaments, and based on the test results and the improved Graesser's ontological model in the framework of generalized visco-plasticity, established a macroscopic only-imaginary ontological model that can unify the ratcheting behavior of the phase change of SMA and the stable superelasticity. The study first analyzed the influence of strain amplitude and cycle number on the characteristic parameters and energy dissipation characteristics of the phase transition of superelastic SMA through the experimental results. Second, by taking the accumulation of inelastic strain of SMA as the internal variable and considering the martensitic hardening characteristics, it introduced the evolution equation of the characteristic parameters of superelastic SMA into the improved Graesser model to expand the ontological model that can unify the phase transition behavior of superelastic SMA. It then adopted this ontological model to establish the macro-only model that can unify the phase transition ratchet behavior of SMA and the stable superelastic behavior of SMA. Finally the model is used to numerically simulate the hysteresis curve of hyperelastic SMA during uniaxial cyclic stretching, to compare the predicted results with the hysteresis curve of the experimental results, and to evaluate the prediction error of the energy dissipation of hyperelastic SMA in a single loop. The results showed that the new model could broaden the scope of application of the improved model. And on the basis of retaining the original function, it could also accurately describe the phase change ratchet behavior of superelastic SMA under the influence of varying strain amplitude, with a high prediction accuracy of the single-loop energy dissipation value. The output of this work may provide a better applicative theory for the superelastic SMA energy dissipation unit in engineering practice.
Key words:  shape memory alloy    superelasticity    phase transition ratchet behavior    strain amplitude    Graesser constitutive model
发布日期:  2025-08-28
ZTFLH:  TG139.6  
基金资助: 陕西省重点研发计划资助项目(2023-YBSF-516)
通讯作者:  *杨涛,西安工程大学副教授、硕士研究生导师,主要从事工程结构抗震、结构健康监测、地下空间结构等方面的研究工作。yangtao0604@163.com   
引用本文:    
杨涛, 刘章锐, 刘博, 张阳. 考虑应变幅值影响的超弹性SMA相变棘轮行为宏观唯象本构模型[J]. 材料导报, 2025, 39(17): 24050012-6.
YANG Tao, LIU Zhangrui, LIU Bo, ZHANG Yang. A Macroscopic Phenomenological Constitutive Model of Superelastic SMA Phase Transition Ratchet Behavior Considering the Effect of Strain Amplitude. Materials Reports, 2025, 39(17): 24050012-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24050012  或          https://www.mater-rep.com/CN/Y2025/V39/I17/24050012
1 Qian H,Chen C,Zhang Q Y,et al. Engineering Mechanics,2023,40(6), 73 (in Chinese).
钱辉,陈程,张庆元,等. 工程力学,2023,40(6), 73.
2 FangC,Wang W,Chen Y Y,et al. Journal of Building Structure,2019,40(7), 1 (in Chinese).
方成,王伟,陈以一. 建筑结构学报,2019,40(7), 1.
3 CuiD, Li H N, Song G B, et al. Journal of Dalian University of Technology, 2007(2), 257 (in Chinese).
崔迪, 李宏男, 宋钢兵. 大连理工大学学报, 2007(2), 257.
4 Yang BH, Qian H, Shi Y F, et al. Materials Reports, 2022, 36(4), 148 (in Chinese).
杨博恒, 钱辉, 师亦飞, 等. 材料导报, 2022, 36(4), 148.
5 Xu W, Huang B, Zhu P L, et al. Journal of Wuhan University of Technology, 2022, 44(9), 43 (in Chinese).
徐伟, 黄斌, 朱培林, 等. 武汉理工大学学报, 2022, 44(9), 43.
6 Du Y F, Han B, Li H. Engineering Mechanics, 2022, 39(12), 190 (in Chinese).
杜永峰, 韩博, 李虎. 工程力学, 2022, 39(12), 190.
7 Qiu S J, Gu Q, Jiang G Q, et al. Engineering Mechanics, 2021, 38(1), 109 (in Chinese).
胡淑军, 顾琦, 姜国青, 等. 工程力学, 2021, 38(1), 109.
8 Wang Z Y, Mao C X, Zhang L Q, Journal of Civil Engineering, 2012, 45(S2), 53 (in Chinese).
王振营, 毛晨曦, 张亮泉. 土木工程学报, 2012, 45(S2), 53.
9 He HF, Zhou Y L, Wu M, et al. Engineering Mechanics, 2023, 40(S1), 283 (in Chinese).
和海芳, 周雨龙, 伍敏, 等. 工程力学, 2023, 40(S1), 283.
10 Qiu C X, Wu C J, Du X L. Journal of Beijing University of Technology, 2022, 48(12), 1226 (in Chinese).
邱灿星, 吴诚静, 杜修力. 北京工业大学学报, 2022, 48(12), 1226.
11 Ozdemir, Haluk. Nonlinear transient dynamic analysis of yielding structures. University of California, Berkeley, 1976.
12 GraesserE, Cozzarelli F. Journal of Intelligent Material Systems and Structures, 1994, 5(5), 78.
13 Zhang ZH, Sheng P, Wang Q T, et al. Chinese Journal of Applied Mechanics, 2016, 33(5), 820 (in Chinese).
张振华, 绳飘, 王钦亭, 等. 应用力学学报, 2016, 33(5), 820.
14 Wilde K, Gardoni P, Fujino Y. Engineering Structures, 2000, 22(3), 222.
15 Zhu S, Zhang Y. Smart Materials and Structures, 2007, 16(5), 1696.
16 Zhang Y, Zhu S. Smart Materials and Structures, 2007, 16(5), 1603.
17 Yang Q J, K Q H, K GZ, et al. Journal of Functional Materials, 2015, 46(10), 10018 (in Chinese).
杨强军, 阚前华, 康国政, 等. 功能材料, 2015, 46(10), 10018.
18 QianH. Study on energy dissipation and shock absorption structure system of shape memory alloy damper. Ph. D Thesis, Dalian University of Technology, China, 2008 (in Chinese).
钱辉. 形状记忆合金阻尼器消能减震结构体系研究. 博士学位论文, 大连理工大学, 2008.
19 ZhouT, Kan Q H, Kang Z G, et al. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(3), 588 (in Chinese).
周廷, 阚前华, 康国政, 等. 力学学报, 2017, 49(3), 588.
20 LiuBo, Wang S L, Li B B, et al. Materials Reports, 2020, 34(14), 14161 (in Chinese).
刘博, 王社良, 李彬彬, 等. 材料导报, 2020, 34(14), 14161.
21 Gao YF, Liang X B, Dong L, et al. Metallic materials-tensile testing Part 1:method of test at room temperature, China Quality Inspection press, China, 2010 (in Chinese).
高怡斐, 梁新帮, 董莉, 等. 金属材料 拉伸试验 第1部分:室温试验方法, 中国质检出版社, 2010.
[1] 杨院霞, 郝刚领, 千佳祥, 王幸福, 许巧平, 王伟国. 硼元素及热轧对CuAlNi合金微观组织和力学性能的影响[J]. 材料导报, 2025, 39(13): 24070166-7.
[2] 张括, 李明鹏, 周国安, 张龄匀. 加载频率对镍钛形状记忆合金循环压缩过程中相变、塑性与传热相互作用的影响[J]. 材料导报, 2025, 39(10): 24060186-6.
[3] 周玉浩, 连鸣, 王颜凯, 苏明周. 7×19构型NiTi形状记忆合金绞线超弹性试验研究[J]. 材料导报, 2024, 38(21): 23070029-10.
[4] 秦煜, 王亭, 辛景舟, 汤喻杰, 王威娜. 形状记忆合金增强水泥基复合材料及其构件研究进展[J]. 材料导报, 2024, 38(19): 23060190-9.
[5] 赵光伟, 李达, 陈健, 方东, 黄才华, 石增敏, 叶永盛. Hf含量对Ti49-XNi44Cu6Y1HfX形状记忆合金的组织与超弹性的影响[J]. 材料导报, 2023, 37(9): 21010179-6.
[6] 杨博恒, 钱辉, 师亦飞, 康莉萍. 不同训练条件下NiTi形状记忆合金超细丝力学性能的稳定性[J]. 材料导报, 2022, 36(4): 21010093-5.
[7] 雷波, 郝刚领, 李育川, 王金. 冷却速率对CuAlNi形状记忆合金阻尼行为的影响[J]. 材料导报, 2022, 36(24): 21090026-4.
[8] 叶俊杰, 贺志荣, 张坤刚, 冯辉. 退火温度对Ti-50.8Ni-0.1Zr形状记忆合金丝记忆行为和力学性能的影响[J]. 材料导报, 2021, 35(4): 4118-4123.
[9] 李杰锋, 杨忠清. 形状记忆合金热力学经验本构模型的数值分析及修正[J]. 材料导报, 2021, 35(18): 18116-18123.
[10] 刘兵飞, 董少哲, 周蕊, 杜春志. SMA损伤对航空发动机变形齿单齿力学性能的影响[J]. 材料导报, 2021, 35(16): 16070-16075.
[11] 李锐, 曾令碧, 刘腾, 王晓杰, 杨平安. 不同温度下纯Ni/NiTi合金的摩擦特性研究[J]. 材料导报, 2020, 34(Z1): 297-303.
[12] 李启泉,李岩,马悦辉. 钛基高温形状记忆合金进展综述[J]. 材料导报, 2020, 34(3): 3142-3147.
[13] 刘兵飞, 刘艳艳, 周蕊. 航空发动机变形齿的新材料设计与力学性能[J]. 材料导报, 2020, 34(2): 2117-2122.
[14] 刘博, 王社良, 李彬彬, 杨涛, 李昊, 刘洋, 何露. 一种考虑应变幅值和应变速率影响的超弹性SMA宏观唯象本构模型[J]. 材料导报, 2020, 34(14): 14161-14167.
[15] 刘博, 王社良, 何露, 李昊, 杨涛, 李彬彬. NiTi形状记忆合金丝的约束回复应力输出特性及本构模型[J]. 材料导报, 2020, 34(10): 10082-10087.
[1] Guang MA,Xin CHEN,Licheng LU,Dongqun XIN,Li MENG,Hao WANG,Ling CHENG,Fuyao YANG. Monte Carlo Simulation of the Evolution of Goss Texture in Secondary Recrystallization of Thin Gauge Grain Oriented Silicon Steel[J]. Materials Reports, 2018, 32(2): 313 -315 .
[2] WANG Tiantian, XU Mengjia, XU Jijin, YU Chun, LU Hao. Influence of Second Welding Thermal Cycle on Reheat Cracking Sensitivity of CGHAZ in T23 Steel[J]. Materials Reports, 2017, 31(12): 56 -59 .
[3] XIE Jiale, YANG Pingping, LI Chang Ming. Stable and High-efficient α-Fe2O3 Based Photoelectrochemical Water Splitting: Rational Materials Design and Charge Carrier Dynamics[J]. Materials Reports, 2018, 32(7): 1037 -1056 .
[4] YANG Shicong, YAO Guowen, ZHANG Jinquan, SHI Kang. The Corrosion Fatigue Characteristic of Steel Strand Experiencing an Artificial Accelerated Salt Fog Ageing[J]. Materials Reports, 2018, 32(12): 1988 -1993 .
[5] HU Yaoqiang, CHEN Fajin, LIU Haining, ZHANG Huifang, WU Zhijian, YE Xiushen. Preparation of Poly(N-isopropylacrylamide) Hydrogel and Its Thermally Induced Aggregation Behavior[J]. Materials Reports, 2018, 32(14): 2491 -2496 .
[6] LI Xiuli, TIE Shengnian. Effect of Quick-dissolving and High-viscosity Carboxymethyl Cellulose Sodium on Properties of Glauber’s Salt-based Composites Phase Change Energy Storage Materials with Different Phase Transition Temperature Gradient[J]. Materials Reports, 2018, 32(22): 3848 -3852 .
[7] CHANG Jingjing. Spin Coating Epitaxial Films[J]. Materials Reports, 2019, 33(12): 1919 -1920 .
[8] REN Xiuxiu, ZHU Yiju, ZHAO Shengxiang, HAN Zhongxi, YAO Lina. The Relationship Between Micromechanical Property and Friction Property of Four Kinds of Energetic Crystals[J]. Materials Reports, 2019, 33(z1): 448 -452 .
[9] ZHUANG Xiaodong, LI Rongxing, YU Xiaohua, XIE Gang, HE Xiaocai, XU Qingxin. Preparation of Lithium Titanate Electrode Materials by Solid Phase Method[J]. Materials Reports, 2019, 33(16): 2654 -2659 .
[10] BIAN Guixue, CHEN Yueliang, ZHANG Yong, WANG Andong, WANG Zhefu. Equivalent Conversion Coefficient of Aluminum/Titanium Alloy Between Acidic NaCl Solution with Different Concentration and Water Based on Galvanic Corrosion Simulation[J]. Materials Reports, 2019, 33(16): 2746 -2752 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed