Please wait a minute...
材料导报  2025, Vol. 39 Issue (17): 24040184-7    https://doi.org/10.11896/cldb.24040184
  金属与金属基复合材料 |
能量输入对电子束选区熔化成形Fe-3.5%Si组织和磁性能的影响
刘世锋, 董日宇, 张朝晖*, 魏瑛康, 王建勇, 张亮亮, 贾文鹏, 王岩*
西安建筑科技大学冶金工程学院,西安 710055
Effect of Energy Input on the Microstructure and Magnetic Properties of Fe-3.5%Si Formed by Selective Electron Beam Melting
LIU Sifeng, DONG Riyu, ZHANG Zhaohui*, WEI Yingkang, WANG Jianyong, ZHANG Liangliang, JIA Wenpeng, WANG Yan*
School of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
下载:  全 文 ( PDF ) ( 25393KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 Fe-Si合金具有优异的磁性能和低材料成本,被广泛应用于电机铁芯制造。电子束选区熔化(Selective electron beam melting,SEBM)是一种具有高预热温度、高能量利用率、高功率密度、和低残余应力等优点的增材制造技术,特别适合难熔、脆性金属材料的直接成形。本工作采用SEBM成形Fe-3.5%Si合金(质量分数),探究了能量密度(E)对试样组织和磁性能的影响规律。研究结果表明,随着E的增加粉末逐渐完全熔化,打印过程的缺陷如孔隙、未熔粉末等减少,在E大于180 J/m时孔隙率降低到1%以下。晶粒尺寸与能量输入高度相关,随着E增加试样的平均晶粒尺寸先增大后减小,晶粒尺寸减小的原因是能量输入过高导致Marangoni效应加剧增加了形核位点,平均晶粒尺寸在E等于180 J/m时达到最大,为161 μm。平行于打印方向(BD)柱状晶明显长大。在E等于140 J/m时,垂直于BD方向形成立方织构({100}〈001〉)强度为4.71。随着E的增加,试样λ纤维织构强度减弱,择优取向由{100}面逐渐转移至{110}面。试样矫顽力(Hc)与晶粒尺寸呈明显负相关,Hc随E增加呈先减小后变大趋势,在E等于180 J/m时,即平均晶粒尺寸最大时Hc达到最小值1.07 Oe。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘世锋
董日宇
张朝晖
魏瑛康
王建勇
张亮亮
贾文鹏
王岩
关键词:  增材制造  Fe-Si合金  组织  织构  磁性能    
Abstract: Fe-Si composite is widely used in motor core manufacturing because of its excellent magnetic properties and low material cost. Selective electron beam melting (SEBM) is an additive manufacturing technology with high preheating temperature, high energy utilization rate, high power density, and low residual stress, which is especially suitable for direct forming of refractory and brittle metal materials. The effects of linear energy density (E) on the microstructure, texture and magnetic properties of Fe-3.5wt%Si alloy by SEBM were investigated. The results show that the powder gradually melts completely with the increase of E, and the defects of the printing process such as pores and unmelted powder are wea-kened, and the porosity is reduced to less than 1% when E is greater than 180 J/m. Grain size is highly correlated with energy input. With the increase of E, the average grain size of the sample first increases and then decreases. The reason for the decrease of grain size is that the high energy input leads to the intensification of Marangoni effect and the increase of nucleation site, and the average grain size reaches the maximum of 161 μm when E=180 J/m. Parallel to the building direction (BD), the columnar crystals grow significantly. When E=140 J/m, perpendicular to the BD direction forms a cubic texture ({100}〈001〉) with an intensity of 4.71. With the increase of E, the texture strength of λ fiber decreases, and the preferred orientation gradually shifts from {100} plane to {110} plane. The coercivity (Hc) of the sample is negatively correlated with the grain size. Hc decreases first and then increases with the increase of E. When E=180 J/m, that is, when the average grain size is maximum, Hc reaches the minimum value of 1.07 Oe.
Key words:  additive manufacturing    Fe-Si alloy    microstructure    texture    magnetic property
发布日期:  2025-08-28
ZTFLH:  TG142  
基金资助: 国家自然科学基金(52104341;52304357;52304384);博后基金资助项目(2022MD723810);陕西省科技厅攻关项目(2022GY-232);陕西省科技厅杰出青年科学基金项目(2024JC-JCQN-52),陕西高校青年创新团队资助项目(2022-2025);陕西省教育厅青年创新团队科研计划项目(23JP082);陕西省秦创原”科学家+工程师”队伍建设(2023KXJ-217);咸阳市二О二一年秦创原科技创新专项项目(2021ZDZX-GY-0008)
通讯作者:  *张朝晖,现为西安建筑科技大学冶金工程学院教授。目前主要研究领域为金属材料的化学成分、组织与性能控制;金属材料制备过程的环保与资源综合利用;冶金资源综合利用及环境保护。zhzhhui67@126.com
王岩,现为西安建筑科技大学冶金工程学院副教授。目前主要研究领域为金属材料增材制造与表面改性、涂层技术。wangyan140511@xauat.edu.cn   
作者简介:  刘世锋,现为西安建筑科技大学冶金工程学院教授。目前主要研究领域为钛及钛合金、高熵合金、硬质合金、特种钢等金属3D打印粉末原材料设计、成形设备制备、材料工艺及性能研究;粉末冶金新材料;稀有金属材料加工新工艺、新方法;文物修复3D打印。
引用本文:    
刘世锋, 董日宇, 张朝晖, 魏瑛康, 王建勇, 张亮亮, 贾文鹏, 王岩. 能量输入对电子束选区熔化成形Fe-3.5%Si组织和磁性能的影响[J]. 材料导报, 2025, 39(17): 24040184-7.
LIU Sifeng, DONG Riyu, ZHANG Zhaohui, WEI Yingkang, WANG Jianyong, ZHANG Liangliang, JIA Wenpeng, WANG Yan. Effect of Energy Input on the Microstructure and Magnetic Properties of Fe-3.5%Si Formed by Selective Electron Beam Melting. Materials Reports, 2025, 39(17): 24040184-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24040184  或          https://www.mater-rep.com/CN/Y2025/V39/I17/24040184
1 Krings A, Boglietti A, Cavagnino A, et al. IEEE Transactions on Industrial Electronics, 2016, 64(3), 2405.
2 Lamichhane T N, Sethuraman L, Dalagan A, et al. Materials Today Physics, 2020, 15, 100255.
3 Zhang Bo, Meng Li, Zhang Ning, et al. Iron and Steel, 2021, 56(3), 29(in Chinese).
张波, 孟利, 张宁, 等. 钢铁, 2021, 56(3), 29.
4 Xia Bin, Han Song, Zhang Nan, et al. China Metallurgy, 2018, 28(6), 9(in Chinese).
夏彬, 韩松, 张楠, 等. 中国冶金, 2018, 28(6), 9.
5 Qi Xiuhua, Qiu Chunlin, Cui Yusuo, et al. Journal of Iron and Steel Research, 2001(5), 48(in Chinese).
齐秀华, 邱春林, 崔玉所, 等. 钢铁研究学报, 2001(5), 48.
6 Bi X, Tanaka Y, Sato K. Journal of magnetism and magnetic materials, 1992, 112(1-3), 189.
7 Ninomiya H, Tanaka Y, Hiura A, et al. Journal of Applied Physics, 1991, 69(8), 5358.
8 Verbrugge B, Jiles D C. Journal of Applied Physics, 1999, 85(8), 4895.
9 Yi Y, Zhou Z, Wang Z, et al. Surface Review and Letters, 2011, 18(3-4), 97.
10 Mccausland T. Research-Technology Management, 2020, 63(5), 62.
11 Du Plessis A, Razavi N, Benedetti M, et al. Progress in Materials Science, 2022, 125, 100918.
12 Sing S L, Yeong W Y. Virtual and Physical Prototyping, 2020, 15(3), 359.
13 Debroy T, Wei H L, Zuback J S, et al. Progress in Materials Science, 2018, 92, 112.
14 Wrobel R, Mecrow B. IEEE Transactions on Energy Conversion, 2020, 35(2), 1054.
15 Madichetty S, Mishra S, Basu M. IET Electrical Systems in Transportation, 2021, 11(3), 186.
16 Kustas A B, Susan D F, Johnson K L, et al. Additive Manufacturing, 2018, 21, 41.
17 Zhang B, Fenineche N E, Liao H, et al. Journal of Materials Science & Technology, 2013, 29(8), 757.
18 Garibaldi M, Ashcroft I, Lemke J N, et al. Scripta Materialia, 2018, 142, 121.
19 Yang J, Fu Z, Ye J, et al. Scripta Materialia, 2022, 210, 114460.
20 Martin V, Gillon F, Najjar D, et al. Journal of Magnetism and Magnetic Materials, 2022, 564, 5.
21 Zhang Liangliang, Zhou Yang, Liu Shifeng, et al. China Metallurgy, 2022, 32(3), 1(in Chinese).
张亮亮, 周阳, 刘世锋, 等. 中国冶金, 2022, 32(3), 1.
22 Liu Quanming, Zhang Zhaohui, Liu Shifeng, et al. Journal of Iron and Steel Research, 2015, 27(3), 1(in Chinese).
刘全明, 张朝晖, 刘世锋, 等. 钢铁研究学报, 2015, 27(3), 1.
23 Liu Yuan, Kou Haonan, He Yiqing, et al. Materials Reports, 2024, 38(3), 152(in Chinese).
刘源, 寇浩南, 何怡清, 等. 材料导报, 2024, 38(3), 152.
24 Qin Minghua, Zhang Pengjie, Xin Hongpeng, et al. Powder Metallurgy Industry, 2023, 33(6), 110(in Chinese).
秦明花, 张鹏杰, 辛宏鹏, 等. 粉末冶金工业, 2023, 33(6), 110.
25 Stornelli G, Faba A, Di Schino A, et al. Materials, 2021, 14(6), 17.
26 Garibaldi M, Ashcroft I, Simonelli M, et al. Acta Materialia, 2016, 110, 207.
27 Shen X J, Meng F B, Lau K B, et al. Materials Characterization, 2022, 189, 9.
28 Backes C, Kahlert M, Vollmer M, et al. Journal of Materials Research and Technology, 2024, 29, 1691.
29 Goodall A D, Yiannakou G, Chechik L, et al. Materials & Design, 2023, 230, 112002.
30 Tang Huiping, Wang Jian, Lu Shenglu, et al. Materials Progress in China, 2015, 34(3), 225(in Chinese).
汤慧萍, 王建, 逯圣路, 等. 中国材料进展, 2015, 34(3), 225.
31 Garibaldi M, Ashcroft I, Hillier N, et al. Materials Characterization, 2018, 143, 144.
32 Hilzinger R, Rodewald W. Magnetic Materials, Fundamentals, Products, Properties, Applications, Vacuumschmelze Publics. 2013, pp. 553.
33 Qiu C, Panwisawas C, Ward M, et al. Acta Materialia, 2015, 96, 72.
34 Ng G, Jarfors A, Bi G, et al. Applied Physics A, 2009, 97, 641.
35 Yi J, Kang J, Wang T, et al. Journal of Alloys and Compounds, 2019, 786, 481.
36 Guo M, Gu D, Xi L, et al. International Journal of Refractory Metals and Hard Materials, 2019, 84, 105025.
37 Lupulescu A, Henry S, Marken K, et al. Advances in the Science and Engineering of Casting Solidification, An MPMD Symposium Honoring Doru Michael Stefanescu. Springer, 2016, pp.3.
38 Shen X, Meng F, Lau K B, et al. Materials Characterization, 2022, 189, 112012.
39 Meng F, Huang S, Lau K B, et al. Materials & Design, 2023, 231, 112037.
40 Xue D, Chai G, Li X, et al. Journal of Magnetism and Magnetic Materials, 2008, 320(8), 1541.
41 Herzer G. IEEE Transactions on Magnetics, 1989, 25(5), 3327.
42 Liu S Y, Li Y Q, Liu F D, et al. Optics And Lasers In Engineering, 2016, 81, 87.
43 Fiorillo F, Bertotti G, Appino C, et al. Soft magnetic materials, Wiley Encyclopedia of Electrical and Electronics Engineering, John Wiley & Sons, Inc, 2016, 1.
[1] 张陕南, 侯江涛, 沈元勋, 钟素娟, 秦建, 龙伟民. 银铜复合带在低过载电流下沿界面分断的失效机理研究[J]. 材料导报, 2025, 39(9): 24040030-5.
[2] 李晨晓, 李俊生, 陈雨洁, 颜曼玲, 陈玉蓉, 万帆. 陶瓷材料熔融沉积3D打印研究进展[J]. 材料导报, 2025, 39(8): 24040242-10.
[3] 温晋太, 胡怀谷, 安江山, 韩婷, 李欣俞, 胡季帆. 基于机器学习的快淬NdFeB磁体永磁性能分析与预测[J]. 材料导报, 2025, 39(8): 24030158-7.
[4] 曾琦, 倪浩涵, 刘伟, 黎超超, 王江伟. 增材制造GH3536回流燃烧室火焰筒主燃孔的微观组织演变与裂纹扩展行为[J]. 材料导报, 2025, 39(8): 24040055-4.
[5] 脱锦鹏, 陈安琦, 姚富升, 徐俊杰, 李响, 董龙龙, 杨义. 颗粒增强耐热钛基复合材料设计制备研究进展[J]. 材料导报, 2025, 39(8): 24040119-10.
[6] 王聪, 杨富尧, 刘洋, 韩钰, 高洁, 孙浩, 刘成宇. 快淬速度和Ce浓度对贫稀土Ce-Fe-B合金相组成及磁性能的影响[J]. 材料导报, 2025, 39(7): 24010030-5.
[7] 梅婷, 徐洪扬, 李逊, 龙运伟, 唐华, 李志鹏, 邹爱华. 柱塞泵关键摩擦副中复杂黄铜与硅锰黄铜的微观组织与耐磨特性研究[J]. 材料导报, 2025, 39(7): 24080117-5.
[8] 陈黎松, 刘金学, 解海涛, 刘志鹏, 宋新宇, 肖阳, 关绍康, 何季麟. 退火工艺对Mg-8Li-3Al-2Zn合金挤压板材显微组织与力学性能的影响[J]. 材料导报, 2025, 39(7): 24020152-5.
[9] 谭会杰, 王海燕, 华连庚, 高雪云, 吕萌, 于大威, 邢磊. 稀土Ce对Fe-Ni-Al马氏体时效钢等温过程显微组织演变的影响[J]. 材料导报, 2025, 39(7): 24010236-6.
[10] 杨旭, 张天理, 朱志明, 徐连勇, 陈赓, 杨尚磊, 方乃文. 纳米颗粒对铝合金焊接凝固裂纹抑制机理及影响因素的研究进展[J]. 材料导报, 2025, 39(6): 24030070-10.
[11] 涂文斌, 胡志华, 邹雨柔, 刘冠鹏, 王善林, 陈玉华. 时效时间和Sb添加对Sn-9Zn-3Bi/Cu焊点界面金属间化合物生长行为的影响[J]. 材料导报, 2025, 39(6): 23120193-6.
[12] 姚通睿, 王曼, 席晓丽. 含Al耐热合金高温氧化行为研究现状[J]. 材料导报, 2025, 39(6): 24050040-10.
[13] 王森巍, 王丽, 王明庆, 佘加, 易嘉琰, 陈先华, 潘复生. Mg-xSc(x=0.5,1.0,3.0,5.0)生物医用合金组织与性能研究[J]. 材料导报, 2025, 39(5): 24090019-8.
[14] 郑惠泽, 何建丽, 高晨鑫, 章海明, 向雨欣. WE43镁合金温热压缩下织构演变及再结晶行为[J]. 材料导报, 2025, 39(5): 24020054-7.
[15] 徐海黎, 杨雅雯, 邢强, 陈妍, 廖晓波, 张小萍, 庄健. 玻璃微探针电沉积的微结构制造路径规划[J]. 材料导报, 2025, 39(5): 23100020-7.
[1] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[2] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[3] JIA Zhihong, WENG Yaoyao, DING Lipeng, CHENG Tao, LIU Yingying, LIU Qing. Sn Microalloying for Aluminum Alloys: Strengthening Effects and Mechanisms[J]. Materials Reports, 2017, 31(9): 123 -127 .
[4] WANG Ru, ZHANG Shaokang, WANG Gaoyong. Influence and Mechanism of Mineral Admixtures on Setting and Hardening of Styrene-Butadiene Copolymer/Cement Composite Cementitious Material[J]. Materials Reports, 2017, 31(24): 69 -73 .
[5] DING Yutian, DOU Zhengyi, GAO Yubi, GAO Xin, LI Haifeng, LIU Dexue. In-situ Observation of Solidification Process of GH3625 Superalloy at Different Cooling Rates[J]. Materials Reports, 2017, 31(24): 150 -155 .
[6] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[7] LIU Guoyi, LIU Yuanjun, ZHAO Xiaoming. A Study on Protecting Efficiency to the Radiative Heat of the Outer Fabric for the Fire Proximity Suits[J]. Materials Reports, 2017, 31(22): 116 -120 .
[8] ZHANG Wangxi, WANG Yanzhi, LIANG Baoyan, LI Qiquan, LUO Wei, SUN Changhong, CHENG Xiaozhe, SUN Yuzhou. Review on the Development of Nanodiamonds Used as Functional Materials[J]. Materials Reports, 2018, 32(13): 2183 -2188 .
[9] YANG Fang, ZHANG Long, YU Kun, QI Tianjiao, GUAN Debin. Recent Advances in Humidity Sensitivity of Graphene[J]. Materials Reports, 2018, 32(17): 2940 -2948 .
[10] TIAN Yaqiang, LI Wang, ZHENG Xiaoping, WEI Yingli, SONG Jinying, CHEN Liansheng. Application of Alloy Elements in Quenching and Partitioning Steel:an Overview[J]. Materials Reports, 2019, 33(7): 1109 -1118 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed