Please wait a minute...
材料导报  2025, Vol. 39 Issue (9): 24040030-5    https://doi.org/10.11896/cldb.24040030
  金属与金属基复合材料 |
银铜复合带在低过载电流下沿界面分断的失效机理研究
张陕南, 侯江涛, 沈元勋, 钟素娟, 秦建, 龙伟民*
中国机械总院集团郑州机械研究所有限公司,高性能新型焊接材料全国重点实验室,郑州 450001
Failure Mechanism of Ag/Cu Composite Strips Break Along the Interface Under Low Overload Current
ZHANG Shannan, HOU Jiangtao, SHEN Yuanxun, ZHONG Sujuan, QIN Jian, LONG Weimin*
State Key Laboratory of High Performance & Advanced Welding Materials, China Academy of Machinery Zhengzhou Research Institute of Mechanical Engineering Co., Ltd., Zhengzhou 450001, China
下载:  全 文 ( PDF ) ( 30304KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 银铜复合带以铜代银,相较于纯银熔体材料节银降本,且满足大功率、高低压电路的熔断保护需求,是新一代熔断器用熔体材料,具有广阔的市场应用前景。针对复合带材低过载电流下沿Ag/Cu界面分断,而非纯银狭径处分断的非正常失效现象,通过研究不同折弯工艺下,折弯前后及低过载电流测试前后的界面组织演变、元素分布及电性能变化规律,揭示了银铜复合带异常分断失效模式及机理。结果表明,折弯工艺会影响复合带分断失效模式,折痕位于Ag/Cu界面时,局部应力会使Ag/Cu界面处产生微裂纹。当低过载电流通过带材时,在界面表层集肤效应的作用下,微裂纹的存在使得局部电阻升高而引起热量快速积聚,铜原子沿着界面向银侧大量扩散,并形成了大尺寸的低熔点银铜共晶组织区,具有较低分断条件,另外由于银、铜原子扩散速率的差异,极易形成大量Kirkendall空洞,并进一步扩展形成大的“陨坑”状结构,贯穿带材造成破坏,从而引起带材沿着Ag/Cu界面分断非正常失效。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张陕南
侯江涛
沈元勋
钟素娟
秦建
龙伟民
关键词:  银铜复合带  熔体材料  组织演变  银铜共晶  分断机理    
Abstract: The Ag/Cu composite strip, replacing Ag with Cu, represents a new generation of fuse material with a wide market application prospect compared with pure Ag fuse material due to its advantages such as saving Ag and reducing cost, meeting the needs of high power, high and low voltage circuit fuse protection. There is an abnormal failure phenomenon that the composite strip breaks along the Ag/Cu interface under low times of overload current instead of breaking at the narrow diameter of pure Ag. For this phenomenon, the abnormal break failure mode and mechanism of Ag/Cu composite strips were revealed by studying the interfacial microstructure evolution, element distribution and electrical properties before and after bending and before and after the low overload current test in different bending processes. The results show that the bending process changes the break failure mode of the composite strips, and when the fold is at the Ag/Cu interface, the local stress causes microcracks around the Ag/Cu interface. When the low-fold overload current passes through the strip, under the role of skin effect in the interface surface layer, the existence of microcracks makes the local resistance increase, causing rapid heat accumulation. A significant number of Cu atoms diffused through the interface to the Ag strip, resulting in the formation of large-sized low-melting point Ag/Cu eutectic zones with lower breaking conditions. Due to the difference in the diffusion rate of Ag and Cu atoms, it easily forms a large number of Kirkendall voids at the interface, which can subsequently expand to create a large crater-like structure through the strip to cause damage, resulting in the strip along the Ag/Cu interface breaking abnormal failure.
Key words:  Ag/Cu composite strip    fuse material    microstructure evolution    Ag-Cu eutectic    break mechanism
出版日期:  2025-05-10      发布日期:  2025-04-28
ZTFLH:  TG454  
  TM241  
基金资助: 国家自然科学基金(U22A20191)
通讯作者:  *龙伟民,博士,研究员、博士研究生导师、国家“万人计划”专家、新型钎焊材料与技术国家重点实验室主任,绿色焊接材料与技术国家重点领域创新团队负责人。主要从事新型钎焊材料及其生产技术、钎焊工艺与设备研发及应用研究。longweiminbrazing@163.com   
作者简介:  张陕南,硕士,工程师,目前主要从事新型钎焊材料、熔体材料研发及精密成形工艺研究。
引用本文:    
张陕南, 侯江涛, 沈元勋, 钟素娟, 秦建, 龙伟民. 银铜复合带在低过载电流下沿界面分断的失效机理研究[J]. 材料导报, 2025, 39(9): 24040030-5.
ZHANG Shannan, HOU Jiangtao, SHEN Yuanxun, ZHONG Sujuan, QIN Jian, LONG Weimin. Failure Mechanism of Ag/Cu Composite Strips Break Along the Interface Under Low Overload Current. Materials Reports, 2025, 39(9): 24040030-5.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24040030  或          https://www.mater-rep.com/CN/Y2025/V39/I9/24040030
1 Imaizumi M, Iwasaki Y, Huang Y G. Low-voltage Electrical Technology Information, 1978(5), 40 (in Chinese).
今泉三之, 岩崎行夫, 黄义光. 低压电器技术情报, 1978(5), 40.
2 Fahnoe H H. IEEE Transactions on Industry & Gen Applications, 1970, 5, 463.
3 Hou J T, Sun H W, Liu J, et al. Precious Metals, 2017, 38(S1), 60(in Chinese).
侯江涛, 孙华为, 刘洁, 等. 贵金属, 2017, 38(S1), 60.
4 Song Y B, Long W M, Ma J, et al. Electrotechnical Materials, 2016(2), 7(in Chinese).
宋友宝, 龙伟民, 马佳, 等. 电工材料, 2016(2), 7.
5 Tan Z, Yang Y, Wang P, et al. Sustainability, 2021, 13, 4837.
6 Li Z C, Zhang Y, Xu Y H, et al. Electrical Materials, 2013(4), 36(in Chinese).
李仲才, 章应, 徐永红, 等. 电工材料, 2013(4), 36.
7 Liu L Q, Yao P J, Zu Y T, et al. Electrotechnical Materials, 2019(4), 16(in Chinese).
刘立强, 姚培建, 俎玉涛, 等. 电工材料, 2019(4), 16.
8 Huo Z W. Electrotechnical Materials, 2001(3), 8(in Chinese).
霍志文. 电工材料, 2001(3), 8.
9 Meng L, Zhou S P, Yang F T, et al. Materials Research Bulletin, 2001, 36, 1729.
10 Meng L, Zhou S P, Yang F T, et al. Chinese Journal of Nonferrous Metals, 2001(6), 982(in Chinese).
孟亮, 周世平, 杨富陶, 等. 中国有色金属学报, 2001(6), 982.
11 Meng L, Zhou S P, Yang F T, et al. Materials Characterization, 2001, 11, 6.
12 Guan Z M, Liu G X, Du J, et al. Acta Metallurgica Et Materialia, 1993, 41, 1293
13 Tian M J, Cui D F, Zhang X H. Electrotechnical Materials, 2021(5), 3(in Chinese).
田茂江, 崔得锋, 张晓辉. 电工材料, 2021(5), 3.
14 Long W M, Zhang L, Cheng Y F. Metal Processing(Thermal Processing), 2008(12), 47(in Chinese).
龙伟民, 张雷, 程亚芳. 金属加工(热加工), 2008(12), 47.
15 Feng J C. Journal of Aeronautics, 2022, 43(2), 6(in Chinese).
冯吉才. 航空学报, 2022, 43(2), 6.
16 Long W M, Li T, Zhong S J, et al. Electric Welding Machine, 2004(6), 1(in Chinese).
龙伟民, 李涛, 钟素娟, 等. 电焊机, 2004(6), 1.
17 Wang X J, Zhang Z K, Da C B, et al. China Welding, 2007, 16, 60.
18 Long W M, Zhao Y, Zhong S J, et al. Rare Metal Materials and Engineering, 2021, 50, 7.
19 Li, G X, Sheng Y L, Zhu X F, et al. Journal of Materials Engineering and Performance, 2020, 29, 5291.
20 Zhang J Q, Zhao H Y, Wu S, et al. China Welding, 2004(1), 65.
21 Long W M, Zhang G X, Zhang Q K. Scripta Materialia, 2016, 110, 41.
22 Mao Q D, Shen B, Zhuang J W, et al. High Voltage Technology, 2020, 46(11), 3864(in Chinese).
毛启东, 沈兵, 庄劲武, 等. 高电压技术, 2020, 46(11), 3864.
23 Chen L W, Chen D Q, Shi Q N, et al. Rare Metal Materials and Engineering, 2010, 39, 405.
24 Li S S, Miao B J, Zhang D F, et al. Electrical Appliance and Energy Efficiency Management Technology, 2023(10), 70(in Chinese).
李赛赛, 苗本健, 张达芬, 等. 电器与能效管理技术, 2023(10), 70.
25 Butrymowicz, D B, Manning J R, Read M E. Journal of Physical and Chemical Reference Data, 1974, 3, 527.
26 Kennelly A E, Laws F A, Pierce P H. Transactions of the American Institute of Electrical Engineers, 1915, 34, 1953.
27 Xie L L, Lu H, Jiao Y L, et al. Journal of Alloys and Compounds, 2023, 968, 172018.
[1] 曾琦, 倪浩涵, 刘伟, 黎超超, 王江伟. 增材制造GH3536回流燃烧室火焰筒主燃孔的微观组织演变与裂纹扩展行为[J]. 材料导报, 2025, 39(8): 24040055-4.
[2] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[3] 叶拓, 邱飒蔚, 夏二立, 郭鹏程, 吴远志, 李落星. 动态冲击载荷下7003铝合金的力学响应行为及力学本构建模[J]. 材料导报, 2024, 38(13): 24010026-8.
[4] 朱艳春, 邵珠彩, 罗媛媛, 黄志权, 牛勇, 秦建平. Ti2AlNb合金应变速率敏感指数和应变硬化指数与变形参数和晶粒尺寸关系研究[J]. 材料导报, 2023, 37(5): 21070259-6.
[5] 罗翔, 米振莉, 吴彦欣, 杨永刚, 江海涛, 胡宽辉. 退火温度对LH800空冷强化钢组织与力学性能的影响[J]. 材料导报, 2023, 37(3): 21080047-6.
[6] 张志强, 楚昊然, 张天刚, 路学成, 张宇航, 郭志永. UNS S32750双相不锈钢焊接热影响区微观组织演变[J]. 材料导报, 2023, 37(21): 22050291-7.
[7] 李朝阳, 黄光杰, 曹玲飞, 曹宇, 林林. 升温速率对AA2060铝锂合金中间形变热处理微观组织的影响[J]. 材料导报, 2022, 36(7): 21020008-7.
[8] 贾红敏, 常剑秀. 定向凝固镁合金的研究进展及应用前景[J]. 材料导报, 2022, 36(6): 20060149-7.
[9] 吴敏, 刘健, 罗霞, 刘允中, 蔡仁烨, 徐伟, 陈晓. Al-Cu-Mg合金粉末在半固态的组织演变及晶粒粗化机制[J]. 材料导报, 2022, 36(24): 22030231-7.
[10] 杨文涛, 何鹏飞, 刘明, 周永欣, 王海斗, 白宇, 李青. 热处理工艺对铝硅合金显微组织和性能影响的研究现状[J]. 材料导报, 2022, 36(11): 20080038-9.
[11] 袁傲明, 任学平. 固溶时效对1Cr21Ni5Ti双相不锈钢组织的影响[J]. 材料导报, 2021, 35(Z1): 443-446.
[12] 刘伟, 吴远志, 邓彬, 刘安民, 刘巍, 孙乾, 叶拓. 时效工艺对6061铝合金力学性能各向异性的影响及微观组织研究[J]. 材料导报, 2021, 35(4): 4134-4138.
[13] 王永金, 张应超, 宋仁伯. 梯度结构半固态9Cr18不锈钢的制备与显微组织演变[J]. 材料导报, 2021, 35(2): 2120-2124.
[14] 刘贵民, 杜林飞, 闫涛, 惠阳. Cu-Al2O3复合粉末颗粒原位生成机制探究[J]. 材料导报, 2020, 34(8): 8031-8035.
[15] 黄晓锋, 魏浪浪, 杨剑桥, 张乔乔, 尚文涛, 李旭娇. 半固态等温热处理对Mg-7Zn-1Cu-0.3V镁合金非枝晶组织的影响[J]. 材料导报, 2020, 34(14): 14116-14121.
[1] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[2] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[3] JIA Zhihong, WENG Yaoyao, DING Lipeng, CHENG Tao, LIU Yingying, LIU Qing. Sn Microalloying for Aluminum Alloys: Strengthening Effects and Mechanisms[J]. Materials Reports, 2017, 31(9): 123 -127 .
[4] WANG Ru, ZHANG Shaokang, WANG Gaoyong. Influence and Mechanism of Mineral Admixtures on Setting and Hardening of Styrene-Butadiene Copolymer/Cement Composite Cementitious Material[J]. Materials Reports, 2017, 31(24): 69 -73 .
[5] DING Yutian, DOU Zhengyi, GAO Yubi, GAO Xin, LI Haifeng, LIU Dexue. In-situ Observation of Solidification Process of GH3625 Superalloy at Different Cooling Rates[J]. Materials Reports, 2017, 31(24): 150 -155 .
[6] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[7] LIU Guoyi, LIU Yuanjun, ZHAO Xiaoming. A Study on Protecting Efficiency to the Radiative Heat of the Outer Fabric for the Fire Proximity Suits[J]. Materials Reports, 2017, 31(22): 116 -120 .
[8] ZHANG Wangxi, WANG Yanzhi, LIANG Baoyan, LI Qiquan, LUO Wei, SUN Changhong, CHENG Xiaozhe, SUN Yuzhou. Review on the Development of Nanodiamonds Used as Functional Materials[J]. Materials Reports, 2018, 32(13): 2183 -2188 .
[9] YANG Fang, ZHANG Long, YU Kun, QI Tianjiao, GUAN Debin. Recent Advances in Humidity Sensitivity of Graphene[J]. Materials Reports, 2018, 32(17): 2940 -2948 .
[10] TIAN Yaqiang, LI Wang, ZHENG Xiaoping, WEI Yingli, SONG Jinying, CHEN Liansheng. Application of Alloy Elements in Quenching and Partitioning Steel:an Overview[J]. Materials Reports, 2019, 33(7): 1109 -1118 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed