Please wait a minute...
材料导报  2025, Vol. 39 Issue (23): 24100070-8    https://doi.org/10.11896/cldb.24100070
  高分子与聚合物基复合材料 |
碳纤维复合材料固化过程的非均匀温度场重构技术研究
宋春生1,2,*, 徐龙1, 李泓燊1, 江友亮1,2, 罗怡杭3
1 武汉理工大学机电工程学院,武汉 430070
2 湖北省磁悬浮工程技术研究中心,武汉 430070
3 咸宁海威复合材料制品有限公司,湖北 咸宁 437000
Study on Non-uniform Temperature Field Reconstruction Technology in the Curing Process of Carbon Fiber Composite Materials
SONG Chunsheng1,2,*, XU Long1, LI Hongshen1, JIANG Youliang1,2, LUO Yihang3
1 School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan 430070, China
2 Hubei Provincial Engineering Technology Research Center for Magnetic Suspension, Wuhan 430070, China
3 Xianning Haiwei Composite Products Co., Ltd., Xianning 437000, Hubei, China
下载:  全 文 ( PDF ) ( 13289KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 在高端制造领域,碳纤维复合材料的应用十分广泛,而其固化过程中存在的非均匀温度场对构件成型质量有极大影响。基于此,本工作聚焦于复合材料的固化过程,引入三次样条插值方法,针对其非均匀温度场开展重构技术的研究。首先,对比验证了提出的数值模拟方法的有效性和准确性;然后,利用该方法对碳纤维复合材料固化过程的温度场进行数值模拟,同时对模拟结果进行分析,总结了厚度变化对温度场的影响规律以及温度峰值时刻厚度方向的温度场分布规律;最后,通过算法在稀疏监测样本的情况下,对复合材料固化过程中温度峰值时刻沿厚度方向的平面温度场进行重构,同时针对监测点位的数量和布局开展重构精度影响规律分析。研究结果表明:本工作所用的重构方法可以在较少监测点位信息的情况下,很好地对复合材料固化过程中的非均匀温度场进行重构,且重构精度较高,平均误差约为1.46%,最大误差约为10.55%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
宋春生
徐龙
李泓燊
江友亮
罗怡杭
关键词:  碳纤维复合材料  固化过程  非均匀温度场  重构    
Abstract: Carbon fiber composite materials are widely used in the high-end manufacturing field, but it’s non-uniform temperature field in the curing process has a serious impact on the quality of molding component. Based on this, this work focuses on the curing process of composite materials, introduces the cubic spline interpolation method, and conducts research on reconstruction techniques for their non-uniform temperature fields. Firstly, the effectiveness and accuracy of the numerical simulation method proposed in this work were compared and verified. Then, the validated method was used to simulate the temperature field during the curing process of carbon fiber composite materials, and the simulation results were analyzed. The influence of variation in thickness on the temperature field and it’s distribution along the thickness direction at the peak temperature were summarized. Finally, the algorithm was used to reconstruct the planar temperature field along the thickness direction at the peak temperature during the curing process of composite materials in the case of sparse monitoring samples. At the same time, the influence of reconstruction accuracy with the number and layout of monitoring points were summarized. The results indicate that the reconstruction method used in this work can effectively reconstruct the non-uniform temperature field during the curing process of composite materials with relatively little monitoring point information, and the reconstruction accuracy is high with an average error of about 1.46% and a maximum error of about 10.55%.
Key words:  carbon fiber composite material    curing process    non-uniform temperature field    reconstruction
出版日期:  2025-12-10      发布日期:  2025-12-03
ZTFLH:  TB332  
基金资助: 2023年湖北省重大攻关项目(JD)(2023BAA028)
通讯作者:  *宋春生,博士,武汉理工大学机电工程学院副院长、教授、博士研究生导师。目前主要研究方向为碳纤维复合材料零部件设计及其隔振、光纤光栅传感技术在隔振领域的应用和机械振动主动控制与磁悬浮主动隔振技术。song_chsh@163.com   
引用本文:    
宋春生, 徐龙, 李泓燊, 江友亮, 罗怡杭. 碳纤维复合材料固化过程的非均匀温度场重构技术研究[J]. 材料导报, 2025, 39(23): 24100070-8.
SONG Chunsheng, XU Long, LI Hongshen, JIANG Youliang, LUO Yihang. Study on Non-uniform Temperature Field Reconstruction Technology in the Curing Process of Carbon Fiber Composite Materials. Materials Reports, 2025, 39(23): 24100070-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24100070  或          https://www.mater-rep.com/CN/Y2025/V39/I23/24100070
1 Czech K, Oliwa R, Krajewski D, et al. Materials, 2021, 14(11), 3047.
2 Sarfraz M S, Hong H, Kim S S. Composite Structures, 2021, 266, 113864.
3 Zhao H K, Yu T, Cheng Z F, et al. Journal of Materials Engineering, 2024, 52(5), 46(in Chinese).
赵华坤, 于涛, 程泽非, 等. 材料工程, 2024, 52(5), 46.
4 Xu S Y, Tai Y, Feng T, et al. Aeronautical Computing Technique, 2024, 54(4), 121(in Chinese).
许善宇, 邰瑶, 冯涛, 等. 航空计算技术, 2024, 54(4), 121.
5 Wang Q D, Qiang H W, Ye S T, et al. Journal of Mechanical Engineering, 2023, 59(15), 293(in Chinese).
王权岱, 强昊文, 叶思彤, 等. 机械工程学报, 2023, 59(15), 293.
6 Tang W Y, Xu Y J, Sun Y Y, et al. Journal of Materials Engineering, 2021, 49(9), 142(in Chinese).
唐闻远, 许英杰, 孙勇毅, 等. 材料工程, 2021, 49(9), 142.
7 Yuan Z Y, Wang Y J, Yang K, et al. Acta Materiae Compositae Sinica, 2016, 33(7), 1339(in Chinese).
元振毅, 王永军, 杨凯, 等. 复合材料学报, 2016, 33(7), 1339.
8 Gasser F A, Antony R, Wesley C. International Journal of Mechanics and Materials in Design, 2013, 9(1), 55.
9 Tinkloh S, Wu T, Tröster T, et al. Composite Structures, 2020, 238, 111926.
10 Xie J M, Wang S Y, Cui Z B, et al. Materials, 2020, 13(10), 2277.
11 Ding A X, Li S X, Sun J X, et al. Composite Structures, 2016, 136, 34.
12 Meng J, Zeng J, Hu J J, et al. Piezoelectrics & Acoustooptics, 2016, 38(3), 511(in Chinese).
孟静, 曾捷, 胡晶晶, 等. 压电与声光, 2016, 38(3), 511.
13 Wang S X, Xu K. Journal of Graphics, 2024, 45(2), 388(in Chinese).
王士心, 许可. 图学学报, 2024, 45(2), 388.
14 Liu S Z. The study on distributed optical fiber strain monitoring and strain field reconstruction method for typical mechanical structure. Master’s Thesis, Nanjing University of Aeronautics and Astronautics, China, 2016(in Chinese).
刘苏州. 典型机械结构分布式光纤应变监测及应变场重构方法研究. 硕士学位论文, 南京航空航天大学, 2016.
15 Hu X T. Thermal and mechanics parameters monitoring and field reconstruction method of aircraft structure based on optical frequency domain reflective optical fiber. Master’s Thesis, Nanjing University of Aeronautics and Astronautics, China, 2021(in Chinese).
胡锡涛. 飞行器结构热-力参量光频域反射光纤监测和场重构方法. 硕士学位论文, 南京航空航天大学, 2021.
16 Li H C. Research on deformation detection and reconstruction of high temperature turbine blade based on FBG sensor. Master’s Thesis, Wuhan University of Technology, China, 2021(in Chinese).
李恒春. 基于光纤光栅的高温涡轮叶片变形重构研究. 硕士学位论文, 武汉理工大学, 2021.
17 Su H Z, Li J Y, Hu J, et al. IEEE Sensors Journal, 2013, 13(5), 1403.
18 Liu Z W. Advances In Mechatronics and Control Engineering, 2013, 278, 675.
19 Gan J Y, Hu W Y, Zhang Y C, et al. Acta Materiae Compositae Sinica, 2023, 40(7), 4195(in Chinese).
甘建业, 胡伟叶, 张艺澄, 等. 复合材料学报, 2023, 40(7), 4195.
20 Ding A X. Numerical and theoretical study on process-induced distortions in thermoset composites. Ph. D. Thesis, Wuhan University of Technology, China, 2016(in Chinese).
丁安心. 热固性树脂基复合材料固化变形数值模拟和理论研究. 博士学位论文, 武汉理工大学, 2016.
21 Wang X X. Numerical simulation of curing deformation of thermosetting resin matrix composites. Ph. D. Thesis, Shandong University, China, 2012(in Chinese).
王晓霞. 热固性树脂基复合材料的固化变形数值模拟. 博士学位论文, 山东大学, 2012.
22 Zeng X D, Xiao H, Li W J, et al. Smart Power, 2018, 46(5), 78(in Chinese).
曾宪东, 肖辉, 李文俊, 等. 智慧电力, 2018, 46(5), 78.
23 Yang J Z, Chen H R, Hu L R. Computer Measurement & Control, 2017, 25(1), 185(in Chinese).
阳建中, 陈慧蓉, 胡俐蕊. 计算机测量与控制, 2017, 25(1), 185.
[1] 陈新, 罗洪杰, 王理, 吴林丽, 栢天舒, 廉德良. 基于二维图像和三维模型的泡沫铝结构表征的差异[J]. 材料导报, 2025, 39(8): 24030173-8.
[2] 林海孟, 温勇, 郭晓琦, 孙晓燕, 田沛丰. 不同pH值下制备烟酸根型水滑石的表征及氯离子吸附性能分析[J]. 材料导报, 2025, 39(23): 24100141-7.
[3] 陈历, 朱孙科, 董绍江, 肖勇, 宋霞. 湿热环境对碳纤维复合材料防撞梁低速碰撞损伤的影响[J]. 材料导报, 2024, 38(23): 23090157-7.
[4] 王洪雷, 牛彩云, 朱宏跃, 李晓明, 周丹, 孙志刚, 胡季帆, 杨昌平. NiFe2O4/rGO电极材料的制备及电催化HMF氧化性能研究[J]. 材料导报, 2024, 38(14): 23110252-6.
[5] 温飞娟, 温奇飞, 龙樟, 蒲京辰, 邓荣. 基于超声红外热波技术的再制造零件裂纹检测研究现状[J]. 材料导报, 2023, 37(6): 21030195-8.
[6] 潘星辰, 郜红合, 陈旭辉, 朱子兴. 乘用车座椅材料加工工艺与结构设计[J]. 材料导报, 2023, 37(22): 22090290-7.
[7] 吴国荣, 黄诗雯, 郭跃, 陈旭辉, 宋佳鑫. 面向碳中和的汽车生命周期材料发展与展望[J]. 材料导报, 2023, 37(19): 22090281-8.
[8] 郑德勇, 晋慧慧, 姬鹏霞. Co3S4电极材料的制备及在碱性析氢反应中的重构行为研究[J]. 材料导报, 2023, 37(18): 22040230-4.
[9] 陈剑英, 张恒宇, 肖红, 王府梅. 频率选择表面的可重构及纺织应用[J]. 材料导报, 2022, 36(15): 20110275-7.
[10] 黄明吉, 李斌, 董秀萍. 基于三维骨架细化的金属橡胶三维建模方法研究[J]. 材料导报, 2022, 36(1): 20120035-5.
[11] 丁叁叁, 刘克健. 高速列车用碳纤维复合材料结构损伤修复门槛值研究[J]. 材料导报, 2021, 35(Z1): 613-616.
[12] 陈琨, 张祥林, 安子乾, 程羽佳, 程小全, 冯振宇. 温度对碳纤维平纹布正交层合板拉伸疲劳性能的影响[J]. 材料导报, 2021, 35(16): 16195-16200.
[13] 魏玉鹏, 朱俊志, 蔺景鹏, 申永前, 江恬恬, 李庆林, 王海燕, 喇培清. 碳微/纳米纤维复合微波吸收材料的研究进展[J]. 材料导报, 2021, 35(15): 15205-15211.
[14] 吕瑞阳, 宋凯, 董世运, 门平, 康学良, 闫世兴, 刘晓亭. 24CrNi合金钢力学性能重构磁滞参量定量评价[J]. 材料导报, 2020, 34(14): 14168-14174.
[15] 张绪, 冯瑞, 张晔, 郭卫, 刘富. 民机复合材料帽型长桁压缩承载力分析与试验[J]. 材料导报, 2019, 33(Z2): 215-221.
[1] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[2] WU Wei, CHEN Shiying, ZONG Mengjingzi. Dielectric Properties and Thermal Stability of Nano-Al2O3/Polyether Sulfone-epoxy Resin Composites[J]. Materials Reports, 2017, 31(20): 21 -24 .
[3] MO Peicheng, WU Yi, YU Wenlin, WANG Jilin, ZOU Zhengguang, ZHONG Shenglin, WANG Peng. In Situ Synthesis of PcBN Composites by cBN-Ti-Al-Si and Their Mechanical Property[J]. Materials Reports, 2018, 32(14): 2355 -2359 .
[4] HU Yaoqiang, CHEN Fajin, LIU Haining, ZHANG Huifang, WU Zhijian, YE Xiushen. Preparation of Poly(N-isopropylacrylamide) Hydrogel and Its Thermally Induced Aggregation Behavior[J]. Materials Reports, 2018, 32(14): 2491 -2496 .
[5] SONG Gang, CHI Jiayu, YU Jingwei, LIU Liming. Corrosion Behavior of Mg-steel Laser-TIG Hybrid Welding Joint[J]. Materials Reports, 2018, 32(16): 2773 -2777 .
[6] HUANG Hui, HAN Jianfeng, WANG Yishun, XIA Yang, ZHANG Jun, GAN Yongping, LIANG Chu, ZHANG Wenkui. Supercritical CO2 Assisting Cladding of LiMnPO4 on the Surface of Li[Li0.2-Mn0.54Co0.13Ni0.13]O2 and Its Electrochemical Properties[J]. Materials Reports, 2018, 32(23): 4072 -4078 .
[7] WANG Zhonghui, XIN Yong. Molecular Dynamics Simulation on the Relationship of Oxygen Diffusion and Polymer Chains Activity[J]. Materials Reports, 2019, 33(8): 1293 -1297 .
[8] CHANG Jingjing. Spin Coating Epitaxial Films[J]. Materials Reports, 2019, 33(12): 1919 -1920 .
[9] ZHUANG Xiaodong, LI Rongxing, YU Xiaohua, XIE Gang, HE Xiaocai, XU Qingxin. Preparation of Lithium Titanate Electrode Materials by Solid Phase Method[J]. Materials Reports, 2019, 33(16): 2654 -2659 .
[10] BIAN Guixue, CHEN Yueliang, ZHANG Yong, WANG Andong, WANG Zhefu. Equivalent Conversion Coefficient of Aluminum/Titanium Alloy Between Acidic NaCl Solution with Different Concentration and Water Based on Galvanic Corrosion Simulation[J]. Materials Reports, 2019, 33(16): 2746 -2752 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed