Please wait a minute...
材料导报  2025, Vol. 39 Issue (23): 24100087-9    https://doi.org/10.11896/cldb.24100087
  无机非金属及其复合材料 |
高聚类离子剂固化斜坡土体力学特性及抗冲刷试验研究
周云涛1,2,3,*, 梁炯1,2,3,*
1 中国地质科学院探矿工艺研究所,成都 611734
2 自然资源部地质灾害风险防控工程技术创新中心,成都 611734
3 中国地质调查局地质灾害防治技术中心,成都 611734
Mechanics and Erosion Test of Slope Soil Stabilized by High Polymer-Ionic Curing Agent
ZHOU Yuntao1,2,3,*, LIANG Jiong1,2,3,*
1 Institute of Exploration Technology, CAGS, Chengdu 611734, China
2 Technology Innovation Centerfor Risk Prevention and Mitigation of Geohazard, Ministry of Natural Resources, Chengdu 611734, China
3 Technology Center of Risk Prevention and Mitigation of Geohazard, China Geological Survey, Chengdu 611734, China
下载:  全 文 ( PDF ) ( 28528KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 高陡碎屑斜坡坡表失稳和水土流失是西南高寒山区生态灾害的主要类型,坡表固化是治理碎屑坡失稳的常用手段,但现有的土壤固化剂难以兼顾斜坡土体固化和坡表植被生长。针对高陡碎屑坡生态化治理需求,研发了新型高聚类离子固化剂材料,该材料由聚合液和离子型固化剂配制组成。通过固化土体的直剪试验和抗冲刷试验,揭示了不同类型土体固化后的强度(黏聚力、内摩擦角、等效内摩擦角)随固化剂浓度以及时间的增长规律,探讨了无固化、均匀固化和注浆固化三种固化方式下斜坡土体冲刷量变化规律。试验结果表明:研发的高聚类离子剂材料可显著增大土体的黏聚力,但对土体的内摩擦角提升较小,高聚类离子固化剂更易于与黏土含量较高的土体发生持续性的固化作用,固化效果也随着固化剂浓度的增加趋于显著。均匀固化和注浆固化均可显著提升斜坡的抗冲刷能力。为减少斜坡土体结构的扰动,建议采用钢花管注浆固化的方式进行高陡碎屑斜坡的防治。研究成果对高陡碎屑斜坡的生态化治理与设计具有指导意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周云涛
梁炯
关键词:  边坡工程  高聚类离子剂  等效内摩擦角  坡面冲刷  高陡碎屑坡    
Abstract: Slope surface instability and soil erosion of high steep slopes with clastic mass are the main types of ecological disasters in the southwest alpine mountains. Slope surface solidification is a common means to control the clastic slope instability, however, the existing soil curing agents are difficult to realize both the soil surface solidification and vegetation growth of the slope. To meet the need of ecological treatment of high steep slope with clastic mass, a new type of high polymer-ionic curing agent material was developed, which is composed of polymerization liquid and ionic curing agent. Through direct shear test and erosion test of solidified soil, the law of increasing strength (cohesion, internal friction angle, equivalent internal friction angle) of different types of soil after solidification with the concentration of curing agent and time was revealed. The law of soil erosion amounts under three curing methods:no curing, uniform curing and grouting curing was discussed. The test results show that the high polymer-ionic curing agent material can significantly increase the cohesion of soil, while its internal friction angle is little improved. High polymer-ionic curing agent is more likely to achieve sustained curing effect for the soil with a higher clay content, and the curing effect tends to be more significant with a higher curing agent concentration. Both uniform curing and grouting curing can significantly improve the anti-erosion ability of the slope. In order to reduce the disturbance of the soil structure of the slope, it is recommended to adopt the method of grouting solidification for the control of high steep slopes with clastic mass. The findings have guiding significance for ecological management and design of high steep slopes with clastic mass.
Key words:  slope engineering    high polymer-ionic curing agent    equivalent internal friction angle    slope erosion    high steep slopes with clastic mass
出版日期:  2025-12-10      发布日期:  2025-12-03
ZTFLH:  S157.1  
  U213.1+58  
基金资助: 国家重点研发计划(2019YFC1509904);中国地质调查项目(DD20230450)
通讯作者:  *周云涛,博士,中国地质科学院探矿工艺研究所高级工程师。目前主要从事岩土与地质工程生态化防控技术研究工作。zhouyuntao_13@sina.com;梁炯,硕士,中国地质科学院探矿工艺研究所高级工程师。目前主要从事地质灾害防治技术开发及防治工作。281650151@qq.com   
引用本文:    
周云涛, 梁炯. 高聚类离子剂固化斜坡土体力学特性及抗冲刷试验研究[J]. 材料导报, 2025, 39(23): 24100087-9.
ZHOU Yuntao, LIANG Jiong. Mechanics and Erosion Test of Slope Soil Stabilized by High Polymer-Ionic Curing Agent. Materials Reports, 2025, 39(23): 24100087-9.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24100087  或          https://www.mater-rep.com/CN/Y2025/V39/I23/24100087
1 Xu W S, Gu J Y, Sun B Y, et al. Journal of Changjiang River Scientific Research Institute, 2023, 40(6), 77(in Chinese).
许文盛, 谷金钰, 孙宝洋, 等. 长江科学院院报, 2023, 40(6), 77.
2 Zhang H X, Zheng S Y, Xu B R. Research of Soil and Water Conservation, 2004, 11(3), 320(in Chinese).
张惠霞, 郑书彦, 徐伯荣. 水土保持研究, 2004, 11(3), 320.
3 Zhang X B. Bulletin of Soil and Water Conservation, 2019, 39(6), 302(in Chinese).
张信宝. 水土保持通报, 2019, 39(6), 302.
4 Kou M X. Journal of Gansu Agricultural University, 2013, 48(4), 110(in Chinese).
寇明旭. 甘肃农业大学学报, 2013, 48(4), 110.
5 Zhong Y J, Zhang X C, Yuan R, et al. Materials Reports, 2022, 36(14), 154(in Chinese).
钟玉健, 张晓超, 袁锐, 等. 材料导报, 2022, 36(14), 154.
6 Zhang G H, Niu J, Sun J W, et al. Soils, 2018, 50(1), 32(in Chinese).
张冠华, 牛俊, 孙金伟, 等. 土壤, 2018, 50(1), 32.
7 Li Q, Sun K W, Xu B, et al. Materials Reports, 2011, 25(5), 64(in Chinese).
李琴, 孙可伟, 徐彬, 等. 材料导报, 2011, 25(5), 64.
8 Niu X D, Yang G Q, Liu W C. Strategic Study of CAE, 2017, 19(6), 86(in Chinese).
牛笑笛, 杨广庆, 刘伟超. 中国工程科学, 2017, 19(6), 86.
9 Su C L. Journal of Highway and Transportation Research and Development, 2020, 37(2), 40.
苏成林. 公路交通科技, 2020, 37(2), 40.
10 Xu J, Wang Z C, Yi W F, et al. Highwai, 2018, 63(12), 252(in Chinese).
许军, 汪展翅, 易卫锋, 等. 公路, 2018, 63(12), 252.
11 Zhu Y P, Wang H, Liu D R, et al. Chinese Journal of Geotechnical Engineering, 2022, 44(Z1), 46(in Chinese).
朱彦鹏, 王浩, 刘东瑞, 等. 岩土工程学报, 2022, 44(Z1), 46.
12 Li J D, Wang X, Zhang Y J, et al. Materials Reports, 2021, 35(6), 6100(in Chinese).
李建东, 王旭, 张延杰, 等. 材料导报, 2021, 35(6), 6100.
13 Liu J, Bai Y X, Song Z Z, et al. Journal of Southeast University:Natural Science Edition, 2019, 49(3), 495(in Chinese).
刘瑾, 白玉霞, 宋泽卓, 等. 东南大学学报(自然科学版), 2019, 49(3), 495.
14 Zhang P, Wu M M, Dong J M, et al. Journal of Nanjing Tech University (Natural Science Edition), 2017, 39(4), 93(in Chinese).
张鹏, 吴咪咪, 董金梅, 等. 南京工业大学学报(自然科学版), 2017, 39(4), 93.
15 Ding X L, Zhang X C, Wang J Y. Bulletin of Soil and Water Conservation, 2015, 35(1), 159(in Chinese).
丁小龙, 张兴昌, 王建玉. 水土保持通报, 2015, 35(1), 159.
16 Li Z R, Feng X L, Jiang M H, et al. Mining Research and Development, 2024, 44(9), 167(in Chinese).
李争荣, 冯兴隆, 姜明归, 等. 矿业研究与开发, 2024, 44(9), 167.
17 Yang W L, Shi Y L, Mu P X, et al. Hydrogeology & Engineering Geology, 2022, 49(4), 117(in Chinese).
杨万里, 石玉玲, 穆鹏雪, 等. 水文地质工程地质, 2022, 49(4), 117.
18 Mu B J, Wang K H. Journal of Henan Agricultural University, 2020, 54(6), 1033(in Chinese).
母冰洁, 王康宏. 河南农业大学学报, 2020, 54(6), 1033.
19 Wu Z, Liu J, He Y, et al. Advances in Science and Technology of Water Resources, 2021, 41(5), 28(in Chinese).
吴忠, 刘瑾, 何勇, 等. 水利水电科技进展, 2021, 41(5), 28.
20 Li C Q, Liu Q B, Xiang W, et al. Journal of Changjiang River Scientific Research Institute, 2018, 35(8), 90(in Chinese).
李崇清, 刘清秉, 项伟, 等. 长江科学院院报, 2018, 35(8), 90.
21 Ministry of Water Resources of the People’s Republic of China. Standard for geotechnical testing method: GB/T 50123-2019. China Planning Press, China, 2019(in Chinese).
中华人民共和国水利部. 土工试验方法标准:GB/T 50123-2019. 中国计划出版社, 2019.
22 Yao W Y. Soil and Water Conservation in China, 1993(3), 21(in Chinese).
姚文艺. 中国水土保持, 1993(3), 21.
No related articles found!
[1] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[2] LIU Shuaiyang, WANG Aiqin, LYU Shijing, TIAN Hanwei. Interfacial Properties and Further Processing of Cu/Al Laminated Composite: a Review[J]. Materials Reports, 2018, 32(5): 828 -835 .
[3] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[4] CAO Xiuzhong, ZHAO Bing, HAN Xiuquan, HOU Hongliang, QU Haitao. Research on Deformation Mechanism of SiC Fiber Reinforced Titanium Matrix Composites Subjected to High Temperature Axial Tension[J]. Materials Reports, 2017, 31(8): 88 -93 .
[5] ZHANG Jiaqing, ZHANG Bosi, WANG Liufang, FAN Minghao, XIE Hui, LI Wei. The State of the Art of Combustion Behavior of Live Wires and Cables[J]. Materials Reports, 2017, 31(15): 1 -9 .
[6] LI Xueyun, WANG Hezhong. Optimization and Characterization of TEMPO-Mediated Oxidization of Nanochitin Whiskers[J]. Materials Reports, 2018, 32(10): 1597 -1601 .
[7] ZHAO Qingchen, WANG Jinlong, ZHANG Yuanliang, SHEN Yihong, LIU Shujie. Fatigue Behavior and Fatigue Life for FV520B-I at Different Loading Frequencies[J]. Materials Reports, 2018, 32(16): 2837 -2841 .
[8] ZHOU Chao, WANG Hui, OUYANG Liuzhang, ZHU Min. The State of the Art of Hydrogen Storage Materials for High-pressure Hybrid Hydrogen Vessel[J]. Materials Reports, 2019, 33(1): 117 -126 .
[9] WANG Huifen, LIU Gang, CAO Kangli, YANG Biqi, XU Jun, LAN Shaofei, ZHANG Lixin. Development Status of Carbon Nanotube Materials and Their Application Prospects in Spacecraft[J]. Materials Reports, 2019, 33(z1): 78 -83 .
[10] LEI Lin, YANG Qingbo, ZHANG Zhiqing, FAN Xiangze, LI Xu, YANG Mou, DENG Zanhui. Multi-pass Compression Behavior and Microstructure Evolution of AA2195 Aluminum Lithium Alloy[J]. Materials Reports, 2019, 33(z1): 348 -352 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed