Please wait a minute...
材料导报  2025, Vol. 39 Issue (23): 24110209-7    https://doi.org/10.11896/cldb.24110209
  金属与金属基复合材料 |
油气田采出水中低浓度锂的高效提取研究
单巧利1, 张沨喜1, 滕泽林2, 张帆1, 张鑫3, 刘杰3,*, 武桂芝3, 夏文香3
1 低渗透油气田勘探开发国家工程重点实验室,长庆工程设计有限公司,西安 710018
2 长庆油田第四采油厂,陕西 榆林 719000
3 青岛理工大学环境与市政工程学院,山东 青岛 266033
Efficient Lithium Extraction from Low-lithium-concentration Oil and Gas Field Water
SHAN Qiaoli1, ZHANG Fengxi1, TENG Zelin2, ZHANG Fan1, ZHANG Xin3, LIU Jie3,*, WU Guizhi3,XIA Wenxiang3
1 The National Engineering Laboratory for Exploration and Development of Low Permeability Oil & Gas Fields, Changqing Engineering Design Co., Ltd., Xi’an 710018, China
2 The Fourth Oilfield Company of Changqing, Yulin 719000, Shaanxi, China
3 School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, Shandong, China
下载:  全 文 ( PDF ) ( 6441KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 锂是国民经济发展和国防建设不可或缺的战略资源。油气田采出水中因含有工业开采价值的锂资源,已成为新的研究热点。以油气田采出水中低浓度锂(低至50 mg/L)为研究对象,以HBTA为萃取剂,详细考察了有机相性质(协萃剂种类、有机相组成、皂化度)、水相性质(初始锂浓度、水相pH值、温度)、操作条件(相比、萃取级数、有机相连续与循环利用性能)等因素对低浓度锂萃取效果的影响。研究发现,TOPO只与皂化后的HBTA产生协萃作用,即以Na·BTA·TOPO中的Na交换水溶液中的Li,形成Li·BTA·TOPO萃合物。常温下,当HBTA浓度为0.020 mol/L,TOPO浓度为0.020 mol/L,皂化度为100%,水油相比为1∶1时,锂的单级萃取率可达60%,经过三级萃取,锂的萃取率可达90%以上。有机相连续再生7次后,仍保持较高的萃取效率。研究结论可为油气田水中低浓度锂的提取提供技术支持。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
单巧利
张沨喜
滕泽林
张帆
张鑫
刘杰
武桂芝
夏文香
关键词:    油气田采出水  HBTA  TOPO  萃取    
Abstract: Lithium is an indispensable strategic resource for national economic development and national defense construction. The oil and gas field water has become a new research hotspot because it contains lithium resources of industrial exploitation value. To low-concentration lithium (as low as 50 mg/L) inoil and gas water, using HBTA as the extractant, and sulfonated kerosene as the diluent, the effects of organic phase properties (types of synergies, composition of organic phase, degrees of saponification), aqueous phase properties (initial lithium concentration, pH value in aqueous phase, temperature) and operating conditions (the phase ratio of water and oil, extraction stage, organic phase continuity and recycling performance) on the extraction efficiency of low concentration lithium were investigated in detail. The results show that TOPO with electron donating ability only has co-extraction effect with saponified HBTA, and that, Na in Na·BTA·TOPO exchanges Li in aqueous solution to form Li·BTA·TOPO extracted complexes. When the concentration of HBTA is 0.020 mol/L, TOPO is 0.020 mol/L, the saponification degree is 100%, and the phase ratio is 1∶1, the single-stage extraction efficiency of lithium can reach 60%. After three-stages extraction, the extraction efficiency can reach more than 90%. The study also find that HBTA/TOPO co-extraction system has good continuous and recycling performance, after 7 consecutive regeneration, the extraction efficiency still maintains in a high level. This findings can provide technical support for the extraction of low concentration lithium in oil and gas field water.
Key words:  lithium    oil and gas field water    HBTA    TOPO    extraction
出版日期:  2025-12-10      发布日期:  2025-12-03
ZTFLH:  TE992.2  
基金资助: 低渗透油气田勘探开发国家工程实验室开放课题(KFKT2023-18);国家自然科学基金(52174336);山东省自然科学基金(ZR202102280404)
通讯作者:  *刘杰,博士,青岛理工大学教授、博士研究生导师。围绕复杂体系中有价资源的高效分离提取开展相关新技术和基础理论研究,主要涉及含锂、锶、溴、钴、镍、稀土等有价资源回收利用。liujie19801208@163.com   
作者简介:  单巧利,硕士,长庆油田分公司长庆工程设计有限公司高级工程师,低渗透油气田勘探开发国家工程实验室地面工程研究人员,兼任西安石油大学校外硕士生导师,注册安全工程师。主要从事油气田采出水的处理与资源化、污泥减量化技术研究。
引用本文:    
单巧利, 张沨喜, 滕泽林, 张帆, 张鑫, 刘杰, 武桂芝, 夏文香. 油气田采出水中低浓度锂的高效提取研究[J]. 材料导报, 2025, 39(23): 24110209-7.
SHAN Qiaoli, ZHANG Fengxi, TENG Zelin, ZHANG Fan, ZHANG Xin, LIU Jie, WU Guizhi,XIA Wenxiang. Efficient Lithium Extraction from Low-lithium-concentration Oil and Gas Field Water. Materials Reports, 2025, 39(23): 24110209-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24110209  或          https://www.mater-rep.com/CN/Y2025/V39/I23/24110209
1 Bibienne T, Magnan J, Rupp A, et al. Elements, 2020, 16, 265.
2 Szlugaj J, Radwanek-Bąk B. Gospodarka Surowcami Mineralnymi-Mineral Resources Management, 2022, 38, 129.
3 Tscherning R, Chapman B. Journal of Energy & Natural Resources Law, 2020, 39, 13.
4 Swain B. Separation and Purification Technology, 2017, 172, 388.
5 Chen H X, Yan H, Sun Y L, et al. Inorganic Chemicals Industry, 2024, 56(1), 9(in Chinese).
陈海霞, 严红, 孙云龙, 等. 无机盐工业, 2024, 56(1), 9.
6 Li Y, Zhao Z, Liu X, et al. Transactions of Nonferrous Metals Society of China, 2015, 25, 3484.
7 Kim T. Mining Engineering, 2021, 73, 33.
8 Xu C, Dai Q, Gaines L, et al. Communications Materials, 2020, 1, 99.
9 Gao J Q, Wang D H, Wang W, et al. Acta Geologica Sinica, 2019, 93(6), 1489 (in Chinese).
高娟琴, 王登红, 王伟, 等. 地质学报, 2019, 93(6), 1489.
10 Knapik E, Rotko G, Marszałek M. Energies, 2023, 16, 6628.
11 Zhang Q, Hai C, Sun Y, et al. Separation and Purification Technology, 2025, 354, 128998.
12 Liu Q, Yang P, Tu W, et al. Journal of Water Process Engineering, 2023, 55, 104148.
13 Zante G, Trébouet D, Boltoeva M. Applied Geochemistry, 2020, 123, 104783.
14 Wang X, Numedahl N, Jiang C. Applied Geochemistry, 2024, 172, 106126.
15 Pan Y N, Ji B, Zhang W, et al. Green and Smart Mining Engineering, 2024, 1, 208.
16 Qiu J, Bao L, Guo W, et al. Chinese Journal of Chemical Engineering, 2024, 69, 34.
17 Chen S, Chen Z, Wei Z, et al. Chemical Engineering Journal, 2021, 410, 128320.
18 Tang L, Huang S, Wang Y, et al. ACS Applied Materials & Interfaces, 2020, 12, 9775.
19 Lin Y Q, Zhang Y R, Qiu Y L, et al. Inorganic Chemicals Industry, 2023, 55(1), 33 (in Chinese).
林钰青, 张以任, 邱宇隆, 等. 无机盐工业, 2023, 55(1), 33.
20 Gao T M, Fan N, Dai T. Acta Geologica Sinica, 2024, 98(4), 1310 (in Chinese).
高天明, 范娜, 代涛. 地质学报, 2024, 98(4), 1310.
21 Wei L N, Kang J, Li H, et al. Inorganic Chemicals Industry, 2021, 53(5), 21 (in Chinese).
卫丽娜, 康锦, 李虎, 等. 无机盐工业, 2021, 53(5), 21.
22 Bai R B, Wang J F, Wang D G, et al. Chemical Industry and Engineering Progress, 2021, 40(6), 3224 (in Chinese).
白瑞兵, 王均凤, 王道广, 等. 化工进展, 2021, 40(6), 3224.
23 Zhou Z, Qin W, Chu Y, et al. Chemical Engineering Science, 2013, 101, 577.
24 Zhou Z, Qin W, Fei W, et al. Chinese Journal of Chemical Engineering, 2012, 20, 36.
25 Pranolo Y, Zhu Z, Cheng C Y. Hydrometallurgy, 2015, 154, 33.
26 Zhang L, Li L, Rui H, et al. Journal of Hazardous Materials, 2020, 398, 122840.
27 Zhang L C. Mechanism and process study on lithium separation from alkaline solution using HBTA/TOPO extraction system. Ph. D. Thesis, Qinghai Salt Lake Research Institute, Chinese Academy of Sciences, China, 2019 (in Chinese).
张利诚. HBTA/TOPO萃取体系从碱性溶液中萃取锂的机理及工艺研究. 博士学位论文, 中国科学院青海盐湖研究所, 2019.
28 Xing M, Zhang F, Zheng P, et al. Journal of Cleaner Production, 2024, 434, 139998.
[1] 姚洁丽, 伍小波, 刘紫鹏, 唐繁荣, 廖常平. 锂离子电池负极极片干燥开裂机理与影响因素研究综述[J]. 材料导报, 2025, 39(9): 24070200-7.
[2] 苟清懿, 廖华, 陈凤阳, 曾瑞林, 刘慧哲, 杨妮, 侯彦青, 谢刚. 锂离子电池中锗基负极材料的构建及改性研究[J]. 材料导报, 2025, 39(8): 24050228-11.
[3] 徐婉琳, 冯腾锐, 吴琪, 夏杰桢, 曹蓉. 二维碳基材料在锂硫电池中的研究进展[J]. 材料导报, 2025, 39(7): 23100229-10.
[4] 陈黎松, 刘金学, 解海涛, 刘志鹏, 宋新宇, 肖阳, 关绍康, 何季麟. 退火工艺对Mg-8Li-3Al-2Zn合金挤压板材显微组织与力学性能的影响[J]. 材料导报, 2025, 39(7): 24020152-5.
[5] 张怿炜, 胡仁宗, 欧阳柳章, 刘军, 杨黎春, 朱敏. MoC纳米晶/掺氮多孔碳的结构调控及在锂硫电池中的性能优化[J]. 材料导报, 2025, 39(6): 24050008-6.
[6] 刘平, 王晨, 韩庆文, 苗攀, 马家玉. 半包覆锰基复合锂离子筛的制备与吸附性能[J]. 材料导报, 2025, 39(4): 23110239-7.
[7] 李志录, 王敏. 氯化锂溶液中钾离子的吸附去除研究[J]. 材料导报, 2025, 39(4): 23120006-6.
[8] 童汇, 谢建龙, 张志谋, 郭忻, 喻万景, 郭学益, 黄承焕. 富锂锰基正极材料研究进展[J]. 材料导报, 2025, 39(3): 23080074-18.
[9] 贾向东, 罗展, 镐昆明, 张洪耀, 陆伟. 基于响应面法和MOPSO算法的2195-T6铝锂合金GTN损伤模型[J]. 材料导报, 2025, 39(23): 24120146-8.
[10] 刘翔宇, 程前, 王越, 王永相. NaA型分子筛在废锂电池模拟浸出液中的钴锂金属离子分离和再生应用性能[J]. 材料导报, 2025, 39(22): 24090136-7.
[11] 惠功领, 张晋豪, 解炜, 辛智, 毛昳萱, 陈成猛. 预氧化在高性能钠离子电池用硬炭制备改性中发挥的作用[J]. 材料导报, 2025, 39(20): 24090241-13.
[12] 张凯帆, 王晓军, 王长龙, 胡凯建, 白云翼, 陈辰, 付兴帅. 废弃加气混凝土基胶凝材料协同锂渣制备充填料的研究[J]. 材料导报, 2025, 39(2): 23120264-8.
[13] 裴海华, 赵建伟, 郑家桢, 张贵才, 张菅, 蒋平. 改性纳米锂皂石强化高温泡沫调驱性能研究[J]. 材料导报, 2025, 39(2): 22110070-5.
[14] 彭朝银, 姚耀春, 李银, 陈秋霖, 张克宇, 胡均贤, 张少泽. 杂原子掺杂磷酸铁锂碳包覆层的改性研究进展[J]. 材料导报, 2025, 39(19): 24080184-8.
[15] 付举, 马星阳, 谢雯娜, 吕鹏飞, 智茂永. 锂离子电池硅基负极膨胀机理及改性研究进展[J]. 材料导报, 2025, 39(18): 24070028-8.
[1] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[2] LIU Shuaiyang, WANG Aiqin, LYU Shijing, TIAN Hanwei. Interfacial Properties and Further Processing of Cu/Al Laminated Composite: a Review[J]. Materials Reports, 2018, 32(5): 828 -835 .
[3] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[4] CAO Xiuzhong, ZHAO Bing, HAN Xiuquan, HOU Hongliang, QU Haitao. Research on Deformation Mechanism of SiC Fiber Reinforced Titanium Matrix Composites Subjected to High Temperature Axial Tension[J]. Materials Reports, 2017, 31(8): 88 -93 .
[5] ZHANG Jiaqing, ZHANG Bosi, WANG Liufang, FAN Minghao, XIE Hui, LI Wei. The State of the Art of Combustion Behavior of Live Wires and Cables[J]. Materials Reports, 2017, 31(15): 1 -9 .
[6] LI Xueyun, WANG Hezhong. Optimization and Characterization of TEMPO-Mediated Oxidization of Nanochitin Whiskers[J]. Materials Reports, 2018, 32(10): 1597 -1601 .
[7] ZHAO Qingchen, WANG Jinlong, ZHANG Yuanliang, SHEN Yihong, LIU Shujie. Fatigue Behavior and Fatigue Life for FV520B-I at Different Loading Frequencies[J]. Materials Reports, 2018, 32(16): 2837 -2841 .
[8] ZHOU Chao, WANG Hui, OUYANG Liuzhang, ZHU Min. The State of the Art of Hydrogen Storage Materials for High-pressure Hybrid Hydrogen Vessel[J]. Materials Reports, 2019, 33(1): 117 -126 .
[9] WANG Huifen, LIU Gang, CAO Kangli, YANG Biqi, XU Jun, LAN Shaofei, ZHANG Lixin. Development Status of Carbon Nanotube Materials and Their Application Prospects in Spacecraft[J]. Materials Reports, 2019, 33(z1): 78 -83 .
[10] LEI Lin, YANG Qingbo, ZHANG Zhiqing, FAN Xiangze, LI Xu, YANG Mou, DENG Zanhui. Multi-pass Compression Behavior and Microstructure Evolution of AA2195 Aluminum Lithium Alloy[J]. Materials Reports, 2019, 33(z1): 348 -352 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed