Please wait a minute...
材料导报  2025, Vol. 39 Issue (18): 24070028-8    https://doi.org/10.11896/cldb.24070028
  无机非金属及其复合材料 |
锂离子电池硅基负极膨胀机理及改性研究进展
付举1,2, 马星阳1,2, 谢雯娜1,2, 吕鹏飞1,2, 智茂永1,2,*
1 中国民用航空飞行学院民航安全工程学院,民机火灾科学与安全工程四川省重点实验室,四川 广汉 618307
2 中国民用航空飞行学院民航安全工程学院,四川省全电通航飞行器关键技术工程研究中心,四川 广汉 618307
Advances in the Expansion Mechanism and Modification of Silicon-based Anode for Lithium-ion Batteries
FU Ju1,2, MA Xingyang1,2, XIE Wenna1,2, LYU Pengfei1,2, ZHI Maoyong1,2,*
1 Civil Aircraft Fire Science and Safety Engineering Key Laboratory of Sichuan Province,College of Civil Aviation Safety Engineering,Civil Aviation Flight University of China,Guanghan 618307,Sichuan,China
2 Sichuan Key Technology Engineering Research Center for All-electric Navigable Aircraft,College of Civil Aviation Safety Engineering,Civil Aviation Flight University of China,Guanghan 618307,Sichuan,China
下载:  全 文 ( PDF ) ( 14389KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 锂离子电池凭借能量密度高、自放电率低、无记忆效应等优点在能源领域发展迅猛,其中硅基负极因高理论比容量被认为是继石墨之后最具潜力的负极材料。然而,硅基负极在嵌脱锂过程中严重的体积膨胀导致的电池容量衰减、库仑效率下降等问题仍阻碍其商业化应用。本文综述硅基负极的膨胀机理及改性方面的研究,旨在为解决其用作锂离子电池负极材料时面临的膨胀问题提供理论支撑和实践指导。通过介绍硅基负极的工作原理,深入探讨其膨胀机理,并详细分析了膨胀对硅基负极性能的影响和潜在危害。深入剖析膨胀现象及机理,重点从多维度纳米硅结构、复合物、粘结剂和电解液设计四个关键方面系统阐释了硅基负极的改性研究,并展望了今后的发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
付举
马星阳
谢雯娜
吕鹏飞
智茂永
关键词:  锂离子电池  硅基负极  膨胀  纳米结构设计  复合物设计  粘结剂设计  电解液设计    
Abstract: Lithium-ion batteries are developing rapidly in the energy field due to their advantages of high energy density,low self-discharge rate,no me-mory effect,etc.Silicon-based anodes are considered to be the most promising anode material following graphite due to its high theoretical specific capacity.However,the serious volume expansion of silicon-based anodes during the lithiation/delithiation process results in capacity degradation,coulombic efficiency decline,and other issues,which still hinder its commercialization.This paper reviews the expansion mechanism and modification research progress of silicon-based anodes,aiming to provide theoretical support and practical guidance for solving the expansion problem faced when it is used as anode material for lithium-ion batteries.Through the introduction of the working principle of silicon-based anodes,it discusses the expansion mechanism in depth and analyzes in detail the effects and potential hazards of expansion on the performance of silicon-based anodes.More specifically,it focuses on four aspects,namely,multi-dimensional nano-silicon structure,composite,binder,and electrolyte design,to systematically elucidate the research on silicon-based anode modification,and to make a prospective outlook on the future development.
Key words:  lithium-ion battery    silicon-based anode    volume expansion    nanostructure design    composite design    binder design    electrolyte design
出版日期:  2025-09-25      发布日期:  2025-09-11
ZTFLH:  V32  
基金资助: 国家自然科学基金(22379162);四川省科技计划(2021SZY007);中央高校基本科研业务费基金(J2022-092);民机火灾科学与安全工程四川省重点实验室基金(MZ2022JB02)
通讯作者:  *智茂永,中国民用航空飞行学院民航安全工程学院副教授、硕士研究生导师。目前主要从事航空安全、动力电池热管理研究工作。zhimaoyong@cafuc.edu.cn   
作者简介:  付举,中国民用航空飞行学院民航安全工程学院副教授、硕士研究生导师。目前主要从事动力锂电池关键材料、锂电池热安全与监测预警研究工作。
引用本文:    
付举, 马星阳, 谢雯娜, 吕鹏飞, 智茂永. 锂离子电池硅基负极膨胀机理及改性研究进展[J]. 材料导报, 2025, 39(18): 24070028-8.
FU Ju, MA Xingyang, XIE Wenna, LYU Pengfei, ZHI Maoyong. Advances in the Expansion Mechanism and Modification of Silicon-based Anode for Lithium-ion Batteries. Materials Reports, 2025, 39(18): 24070028-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24070028  或          https://www.mater-rep.com/CN/Y2025/V39/I18/24070028
1 Li X H. People's Tribune, 2024(9), 76 (in Chinese).
李晓华. 人民论坛, 2024(9), 76.
2 Gao X T, Kuang J, Chu P, et al. Southern Energy Construction, 2020, 7(4), 1 (in Chinese).
高啸天, 匡俊, 楚攀, 等. 南方能源建设, 2020, 7(4), 1.
3 Li H, Lyu Y C. Journal of Electrochemistry, 2015, 21(5), 412 (in Chinese)
李泓, 吕迎春. 电化学, 2015, 21(5), 412.
4 Jiang Y M, Li M C, Fan S L, et al. Journal of Zhejiang Institute of Science and Technology, 2025, 53(1), 52 (in Chinese).
江永明, 李梦成, 范淑玲, 等. 浙江理工大学学报, 2025, 53(1), 52.
5 Yang X F. Structural design and preparation of high specific capacity silicon-base and zinc oxide-base anode materials. Master's Thesis, Beijing University of Chemical Technology, China, 2020 (in Chinese).
杨晓飞. 高比容量硅基和氧化锌基负极材料的结构设计与制备研究. 硕士学位论文, 北京化工大学, 2020.
6 Xu X, Zhang H, Chen Y, et al. Journal of Alloys and Compounds, 2016, 677, 237.
7 Hu Z, Xu X, Wang X, et al. Journal of Alloys and Compounds, 2020, 835, 155446.
8 Huggins R A. Journal of Power Sources, 1999, 81, 13.
9 Obrovac M N, Christensen L. Electrochemical and Solid-state Letters, 2004, 7(5), A93.
10 Park C M, Kim J H, Kim H, et al. Chemical Society Reviews, 2010, 39(8), 3115.
11 Prajapati A K, Bhatnagar A. Journal of Energy Chemistry, 2023, 83, 509.
12 Gu M, He Y, Zheng J, et al. Nano Energy, 2015, 17, 366.
13 Zhao X, Lehto V P. Nanotechnology, 2020, 32(4), 042002.
14 Wu H, Cui Y. Nano Today, 2012, 7(5), 414.
15 Yao Y, McDowell M T, Ryu I, et al. Nano Letters, 2011, 11(7), 2949.
16 Ge M, Rong J, Fang X, et al. Nano Research, 2013, 6(3), 174.
17 Yang Y H, Wu S J, Chiu H S, et al. The Journal of Physical Chemistry B, 2004, 108(3), 846.
18 Pan Z W, Dai Z R, Xu L, et al. The Journal of Physical Chemistry B, 2001, 105(13), 2507.
19 Zhou G W, Li H, Sun H P, et al. Applied Physics Letters, 1999, 75(16), 2447.
20 Laik B, Eude L, Pereira-Ramos J P, et al. Electrochimica Acta, 2008, 53(17), 5528.
21 Chan C K, Peng H, Liu G, et al. Nature Nanotechnology, 2008, 3(1), 31.
22 Park M H, Kim M G, Joo J, et al. Nano Letters, 2009, 9(11), 3844.
23 Ortaboy S, Alper J P, Rossi F, et al. Energy & Environmental Science, 2017, 10(6), 1505.
24 Lu J, Liu J, Gong X, et al. Energy Storage Materials, 2022, 46, 594.
25 Chevrier V L, Dahn J R. Journal of the Electrochemical Society, 2009, 156(6), A454.
26 Lu Z, Wong T, Ng T W, et al. Rsc Advances, 2014, 4(5), 2440.
27 Song T, Xia J, Lee J H, et al. Nano Letters, 2010, 10(5), 1710.
28 Tong L, Wang P, Chen A, et al. Carbon, 2019, 153, 592.
29 Jin H, Sun Q, Wang J, et al. New Carbon Materials, 2021, 36(2), 390.
30 Su J T, Lin S H, Cheng C C, et al. Journal of Power Sources, 2022, 531, 231345.
31 Li C, Yuan C, Zhu J, et al. Colloids and Surfaces A, 2022, 655, 129721.
32 Lai P, Liu C, Sun Z, et al. Solid State Sciences, 2024, 148, 107408.
33 Ma C, Wang Z, Zhao Y, et al. Journal of Alloys and Compounds, 2020, 844, 156201.
34 Zhu L H, Chen Y, Wu C, et al. Journal of Alloys and Compounds, 812, 2020, 151848.
35 Su L, Xie J, Xu Y, et al. Physical Chemistry Chemical Physics, 2015, 17(27), 17562.
36 Zhang Y W, Li X T, Zhang Y, et al. Journal of Alloys and Compounds, 2023, 968, 171831.
37 Kim J C, Kim K J, Lee S M. Energies, 2021, 14(8), 2104.
38 Gu L, Han J, Chen M, et al. Energy Storage Materials, 2022, 52, 547.
39 Lee S J, Kim H J, Hwang T H, et al. Nano Letters, 2017, 17(3), 1870.
40 Zhang Y, Mu Z, Lai J, et al. ACS Nano, 2019, 13(2), 2167.
41 Sadeghipari M, Mashayekhi A, Mohajerzadeh S. Nanotechnology, 2018, 29, 055403.
42 Shi J, Zu L, Gao H, et al. Advanced Functional Materials, 2020, 30(35), 2002980.
43 Fang J B, Cao Y Q, Chang S Z, et al. Advanced Functional Materials, 2022, 32(7), 2109682.
44 Li Z, Zhao H, Lv P, et al. Advanced Functional Materials, 2018, 28(31), 1605711.
45 Jin Y, Li S, Kushima A, et al. Energy & Environmental Science, 2017, 10(2), 580.
46 Casino S, Heidrich B, Makvandi A, et al. Journal of Energy Storage, 2021, 44, 103479.
47 Fu L, Xu A, Song Y, et al. Electrochimica Acta, 2021, 387, 138461.
48 Fang R, Li R, Wang Z, et al. Solid State Ionics, 2019, 337, 42.
49 Zhang Y, Zhu C, Ma Z. Journal of Alloys and Compounds, 2021, 851, 156854.
50 Ruttert M, Siozios V, Winter M, et al. ACS Applied Energy Materials, 2019, 3(1), 743.
51 Zhang L, Liu X, Zhang M, et al. Applied Surface Science, 2019, 494, 783.
52 Cao Y, Hatchard T D, Dunlap R A, et al. Journal of Materials Chemistry A, 2019, 7(14), 8335.
53 Chen Y, Huang M, Deng G, et al. Chemical Engineering Journal, 2024, 486, 150111.
54 Xu R, Shi Y, Wang W, et al. International Journal of Green Energy, 2022, 19, 1658.
55 Jang E, Ryu S, Kim M, et al. Journal of Power Sources, 2023, 580, 233326.
56 Wang X, Zhang Y, Ma L, et al. Acta Chimica Sinica, 2019, 77(1), 24.
57 Luan Y G, Zhang X A, Jiang S L, et al. Chinese Journal of Polymer Science, 2018, 36(5), 584.
58 Zhou J H, Cheng X Y, Luo Z W. Fine Chemicals, 2022, 39(7), 1330 (in Chinese).
周建华, 陈潇雨, 罗宗武. 精细化工, 2022, 39(7), 1330.
59 Wang Y, Xu H, Chen X, et al. Energy Storage Materials, 2021, 38, 121.
60 Bai H, Zhou Z, Yang B, et al. Journal of the Electrochemical Society, 2024, 171(5), 050513.
61 Yin J, Xing H, Lin G, et al. Chemical Engineering Journal, 2019, 358, 878.
62 Jiao X, Yin J, Xu X, et al. Advanced Functional Materials, 2021, 31(3), 2005699.
63 Tang R, Zheng X, Zhang Y, et al. Ionics, 2020, 26(12), 5889.
64 Luo C, Wu X, Zhang T, et al. Macromolecular Materials and Engineering, 2021, 306(1), 2000525.
65 Zhang C, Chen Q, Ai X, et al. Journal of Materials Chemistry A, 2020, 8(32), 16323.
66 Kim D S, Kim S H, Hong J Y. Carbon Letters, 2024, 34(8), 2081.
67 Liu D, Zhao Y, Tan R, et al. Nano Energy, 2017, 36, 206.
68 Cai Y, Li Y, Jin B Y, et al. ACS Applied Materials & Interfaces, 2019, 11(50), 46800.
69 Luo C, Du L, Wu W, et al. ACS Sustainable Chemistry & Engineering, 2018, 6(10), 12621.
70 Gu Y, Yang S, Zhu G, et al. Electrochimica Acta, 2018, 269, 405.
71 Sarang K T, Li X, Miranda A, et al. ACS Applied Energy Materials, 2020, 3(7), 6985.
72 Zhu G, Chao D, Xu W, et al. ACS Nano, 2021, 15(10), 15567.
73 Jin Y, Kneusels N J H, Marbella L E, et al. Journal of the American Chemical Society, 2018, 140(31), 9854.
74 Li Q, Liu X, Han X, et al. ACS Applied Materials & Interfaces, 2019, 11(15), 14066.
75 Cao Z, Zheng X, Qu Q, et al. Advanced Materials, 2021, 33(38), 2103178.
76 Domi Y, Usui H, Yamaguchi K, et al. ACS Applied Materials & Interfaces, 2019, 11(3), 2950.
[1] 姚洁丽, 伍小波, 刘紫鹏, 唐繁荣, 廖常平. 锂离子电池负极极片干燥开裂机理与影响因素研究综述[J]. 材料导报, 2025, 39(9): 24070200-7.
[2] 苟清懿, 廖华, 陈凤阳, 曾瑞林, 刘慧哲, 杨妮, 侯彦青, 谢刚. 锂离子电池中锗基负极材料的构建及改性研究[J]. 材料导报, 2025, 39(8): 24050228-11.
[3] 刘奎生, 崔勇, 于晓, 栾海涛, 宋奇达, 陈佳俊, 马子翔, 房奎圳. 恒湿与变湿养护条件下MgO膨胀剂对水泥砂浆膨胀性能的影响分析[J]. 材料导报, 2025, 39(7): 24020085-7.
[4] 吴焱, 乔英杰, 白成英, 王晓东, 张晓红. 聚合物材料正热膨胀调控研究进展[J]. 材料导报, 2025, 39(7): 23120194-11.
[5] 宋国锋, 张师伟, 刘俊, 刘建坤, 梁思明. 硫铝酸盐膨胀剂对水泥砂浆早期徐变与内部湿度的影响[J]. 材料导报, 2025, 39(4): 23100111-7.
[6] 童汇, 谢建龙, 张志谋, 郭忻, 喻万景, 郭学益, 黄承焕. 富锂锰基正极材料研究进展[J]. 材料导报, 2025, 39(3): 23080074-18.
[7] 肖瑶, 邓华锋, 程雷, 黄小芸, 李建林. MICP增强水泥改良红层泥岩填料力学性能及作用机理[J]. 材料导报, 2025, 39(15): 24060063-8.
[8] 杨涵, 刘宁豪, 高强, 何轩, 杨广丰. 基于NSGA-Ⅱ的双迷宫流道液冷板结构优化设计[J]. 材料导报, 2025, 39(15): 24070051-7.
[9] 张笑儒, 宋静, 罗来马, 孙宏骞, 赵聪聪, 田硕, 田亮亮, 吴玉程. 固态锂离子电池电解质材料应用性能的研究进展[J]. 材料导报, 2025, 39(13): 24060166-20.
[10] 张玲玲, 郏永强, 顾星宸, 张子豪, 巴志新. 锂离子电池正极集流体用涂碳铝箔的研究进展[J]. 材料导报, 2025, 39(12): 24030022-6.
[11] 李龙飞, 郑永泉, 万旺军, 徐至宏, 汪清利, 王琛, 贺馨平, 夏新辉, 夏阳. 锂离子电池缺陷检测技术及失效机理分析研究进展[J]. 材料导报, 2025, 39(11): 24100016-9.
[12] 蒙毅, 杨越, 孙健, 曹雷刚. Cu含量对Mg-Cu合金凝固行为的影响[J]. 材料导报, 2025, 39(11): 22100123-9.
[13] 徐升亮, 廖凯, 杨湘杰, 郭洪民. Sc含量及热处理对Al-Si-Cu-Mg合金组织及热学性能的影响[J]. 材料导报, 2025, 39(11): 24060195-8.
[14] 王丕, 宋琛, 董东东, 曾德长, 刘太楷, 文魁, 毛杰, 刘敏. 多孔Fe24Cr金属支撑体厚度对SOFC性能的影响[J]. 材料导报, 2025, 39(1): 23110193-7.
[15] 邢建祥, 杨延朴, 杨集舜, 徐越, 杨廷海, 杨刚. Al掺杂LiNi0.5Co0.2Mn0.3O2材料结构改性及电化学性能研究[J]. 材料导报, 2025, 39(1): 23120197-5.
[1] Pei HE, Weizhi YAO, Jianming LYU, Bo GAO, Xianrong LI. Radiation Resistance Design and Nanoscale Second-phase Particles Characterization for ODS Steels: a Review[J]. Materials Reports, 2018, 32(1): 34 -40 .
[2] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
[3] YANG Xiaojie, DONG Binghai, CHEN Fengxiang, WAN Li, ZHAO Li, WANG Shimin. One-dimensional TiO2 Photoanodes for Dye-sensitized Solar Cells: Fabrication and Applications[J]. Materials Reports, 2017, 31(17): 138 -145 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] ZHU Lijuan, WANG Min, GU Zhengwei, HE Lingling. Research on Stretch Bending Forming of Stainless Steel Curved Beam[J]. Materials Reports, 2017, 31(24): 179 -181 .
[6] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] FU Yu, HE Junbao, ZHANG Ping, LENG Yumin, MA Benyuan, LI Jiyan. Single Crystal Growth and Physical Properties of Layered Transitional Metal Bismuthide BaAg2-δBi2[J]. Materials Reports, 2018, 32(12): 2043 -2046 .
[9] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[10] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed