Please wait a minute...
材料导报  2025, Vol. 39 Issue (11): 22100123-9    https://doi.org/10.11896/cldb.22100123
  金属与金属基复合材料 |
Cu含量对Mg-Cu合金凝固行为的影响
蒙毅*, 杨越, 孙健, 曹雷刚
北方工业大学机械与材料工程学院,北京 100144
Effect of Cu Content on the Solidification Behaviors of Mg-Cu Alloys
MENG Yi*, YANG Yue, SUN Jian, CAO Leigang
School of Mechanical and Materials Engineering, North China University of Technology, Beijing 100144, China
下载:  全 文 ( PDF ) ( 8688KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用位移和应力测量系统,获得Mg-Cu合金凝固冷却过程中的位移、应力随时间和温度的变化曲线,探究Mg-Cu合金凝固过程中成分、位移、应力和组织演变间的交互作用规律。研究结果表明:添加Cu使Mg熔体凝固过程中的膨胀行为由仅存在液相膨胀转变为同时存在液相膨胀和两相区膨胀,且两相区膨胀量(Δl)随Cu含量的增加先减小后增大,这是CuMg2离异共晶相、ɑ-Mg+CuMg2共晶相以及结晶潜热对残余液相加热共同作用的结果。Mg-2.5Cu合金Δl最小,为7.5×10-3 mm。平均凝固收缩速率(shr)随Cu含量的增加先显著增加后逐渐降低,Mg-0.8Cu合金shr最大,为3.3×10-4 mm·s-1。凝固过程膨胀应力的产生受两相区膨胀影响更大。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
蒙毅
杨越
孙健
曹雷刚
关键词:  Mg合金  Cu含量  凝固  膨胀行为  位移  应力    
Abstract: The curves of displacement and stress vs. time and temperature were acquired by a displacement-tested system and force-tested system, respectively. The interactions of content, displacement, stress and microstructure evolution during the solidification of Mg-Cu alloys were stu-died. The findings showed that the addition of Cu into pure Mg melt results in its expansion behaviors changing from liquid expansion behavior only to the coexistence of liquid expansion behavior and mushy zone expansion behavior during solidification process. Additionally, the displacement of mushy zone expansion (Δl) decreases first and then increases with the increase in Cu content. The dependence of Δl on Cu content is the combined effects of the formation of CuMg2 divorced eutectic, (ɑ-Mg + CuMg2) eutectic phase and the heating effect of crystallization latent heat on residual liquid phase. The minimum value of Δl is 7.5×10-3 mm, which is present in the solidification process of Mg-2.5Cu alloy. The mean solidification shrinkage rate (shr) increases significantly first and then decreases with the increase in Cu content, and the maximum value of shr (3.3×10-4 mm·s-1) is present in the solidification process of Mg-0.8Cu alloy. The formation of expansion stress is influenced more by the mushy zone expansion during the solidification process.
Key words:  Mg alloys    Cu content    solidification    expansion behavior    displacement    stress
发布日期:  2025-05-29
ZTFLH:  TG46.2  
基金资助: 北京市教育委员会科学研究计划项目(KM201910009007);北京市自然科学基金(2164060)
通讯作者:  *蒙毅,博士,北方工业大学机械与材料工程学院副教授、硕士研究生导师。目前主要从事镁合金、铝合金铸造等方面的研究。mengyi@ncut.edu.cn   
引用本文:    
蒙毅, 杨越, 孙健, 曹雷刚. Cu含量对Mg-Cu合金凝固行为的影响[J]. 材料导报, 2025, 39(11): 22100123-9.
MENG Yi, YANG Yue, SUN Jian, CAO Leigang. Effect of Cu Content on the Solidification Behaviors of Mg-Cu Alloys. Materials Reports, 2025, 39(11): 22100123-9.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22100123  或          https://www.mater-rep.com/CN/Y2025/V39/I11/22100123
1 Wang X J, Xu D K, Wu R Z, et al. Journal of Materials Science & Technology, 2018, 34, 245.
2 Zhang X, Wang Y, Liu D R, et al. Journal of Crystal Growth, 2020, 543, 1.
3 Hassan S F, Gupta M. Materials Research Bulletin, 2002, 37, 377.
4 Chen S Q, Dong X P, Ma R, et al. Materials Science and Engineering A, 2012, 551, 87.
5 Kawamura Y, Kasahara T, Izumi S, et al. Scripta Materialia, 2006, 55 (5), 453.
6 Cermak J, Kral L, Roupcova P. International Journal of Hydrogen Energy, 2021. 46, 14494.
7 Kursun C, Gogebakan M. Journal of Alloys & Compounds, 2014, 619, 138.
8 Sun Z, Zou L Y, Cheng X M, et al. Materials, 2021, 14(15), 4246.
9 Yan X D, Wan P, Tan L L, et al. Materials Science & Engineering B, 2018, 229, 105.
10 Ren L, Xu L, Feng J W, et al. Journal of Materials Science:Materials in Medicine, 2012, 23(5), 1235.
11 Witte F, Kaese V, Haferkamp H, et al. Biomaterials, 2005, 26(17), 3557.
12 Wang S, Yang C G, Ren L, et al. Materials Letters, 2014, 129(32), 88.
13 Li Y, Liu L N, Wan P, et al. Biomaterials, 2016, 106, 250.
14 Chen J X, Peng W, Zhu L, et al. Materials Technology, 2018, 33(2), 145.
15 Pan F S, Yang M B, Chen X H. Journal of Materials Science & Technology, 2016, 32(12), 1211.
16 Wang Z, Huang Y D, Srinivasan A, et al. Materials & Design, 2013, 47, 90.
17 Song J F, Pan F S, Jiang B, et al. Journal of Magnesium and Alloys, 2016, 4(3), 151.
18 Cao G, Kou S. Materials Science and Engineering A, 2006, 417, 230.
19 Rappaz M, Drezet J, Gremaud M. Metallurgical and Materials Transactions A, 1999, 30(2), 448.
20 Wang Z, Huang Y D, Srinivasan A, et al. Journal of Materials Science, 2014, 49, 353.
21 Wang Y S, Yu J Z, Wang Q D, et al. Materials Reports, 2003, 17(11), 72 (in Chinese).
王业双, 俞继志, 王渠东, 等. 材料导报, 2003, 17(11), 72.
22 Eskin D G, Suyitno, Katgerman L. Progress in Materials Science, 2004, 49(5), 629.
23 Clyne T W, Davies G J. British Foundryman, 1981, 74, 65.
24 Wei Z Q, Liu Z, Wang Z, et al. The Chinese Journal of Nonferrous Metals, 2018, 28(2), 233 (in Chinese).
魏子淇, 刘正, 王志, 等. 中国有色金属学报, 2018, 28(2), 233.
25 Vinodh G, Jafari N H, Li D J, et al. Metallurgical and Materials Transactions A, 2020, 51, 1897.
26 Zhou L, Huang Y D, Mao P L, et al. International Journal of Cast Metals Research, 2011, 24, 170.
27 Song J F, Wang Z, Huang Y D, et al. Metallurgical and Materials Tran-sactions A, 2015, 46, 6003.
28 Wang Y S, Wang Q D, Wu G H, et al. Materials Letters, 2002, 57, 929.
29 Cao G, Kou S. Metallurgical and Materials Transactions A, 2006, 37, 3647.
30 Song J F, Wang Z, Huang Y D, et al. Journal of Materials Science, 2016, 51, 2687.
31 Li P J, Tang B, Kandalova E G. Materials Letters, 2005, 59, 671.
32 Li S S, Tang B, Jin Xi Y, et al. Journal of Materials Science, 2012, 47, 2000.
33 Meng Y, Sun J, Cao L G, et al. Acta Metallurgica Sinica-English Letters, 2018, 32(5), 559.
34 Meng Y, Yang Y, Cao L G, et al. International Journal of Metalcasting, 2022, 17, 703.
35 Okamoto H. Journal of Phase Equilibria and Diffusion, 2015, 36(2), 183.
36 Mezbahul-Islam M, Mostafa A O, Medraj M. Journal of Materials, 2014, 2014, 1.
37 LiY, Li H X, Katgermanb L, et al. Progress in Materials Science, 2021, 117, 1.
38 Stangeland A, Mo A, Nielsen Ø, et al. Metallurgical and Materials Transactions A, 2004, 35, 2903.
39 Chen Z, Wang B, Li S J, et al. ChemElectroChem, 2016, 3, 165.
[1] 曹世豪, 赵锡佳, 王方全, 喻贤磊, 杨荣山. 方腔内正十八烷相变材料凝固放热特性试验研究[J]. 材料导报, 2025, 39(9): 24040013-6.
[2] 李涛, 吕国强, 李遇贤, 钱益超, 张杰. 光伏单晶硅片冲洗过程中应力分布的研究[J]. 材料导报, 2025, 39(7): 24010045-7.
[3] 姜彦杰, 刘浩天, 刘海峰, 车佳玲, 杨维武. 硫酸盐冻融后沙漠砂混凝土单轴受压力学性能试验研究[J]. 材料导报, 2025, 39(7): 23110222-11.
[4] 杜刚, 李亮, 王子晨, 吴俊, 杜修力. 碳纤维混凝土高温冷却后动态压缩性能试验研究[J]. 材料导报, 2025, 39(6): 24010268-6.
[5] 杨旭, 张天理, 朱志明, 徐连勇, 陈赓, 杨尚磊, 方乃文. 纳米颗粒对铝合金焊接凝固裂纹抑制机理及影响因素的研究进展[J]. 材料导报, 2025, 39(6): 24030070-10.
[6] 张昌青, 马东东, 谷怀壮, 王栋, 刘恩荣, 张鹏省. 1060-H24纯铝无轴肩微型搅拌摩擦焊的数值模拟分析[J]. 材料导报, 2025, 39(5): 24020082-6.
[7] 姚未怡, 卜恒勇. 轧制态7050铝合金双道次热变形微观组织演变[J]. 材料导报, 2025, 39(4): 23120032-8.
[8] 董伟, 刘苏磊, 王旭东, 许富民. 脉冲微孔喷射法的应用研究进展[J]. 材料导报, 2025, 39(3): 24020091-9.
[9] 徐升亮, 廖凯, 杨湘杰, 郭洪民. Sc含量及热处理对Al-Si-Cu-Mg合金组织及热学性能的影响[J]. 材料导报, 2025, 39(11): 24060195-8.
[10] 周涛, 张笑晴, 陈家荣, 杨晨艺, 雷彩红. 厚朴酚基形状记忆环氧树脂的制备及性能研究[J]. 材料导报, 2025, 39(11): 24020002-7.
[11] 刘倩, 卢秉恒. 金属增材制造质量控制及复合制造技术研究现状[J]. 材料导报, 2024, 38(9): 22100064-8.
[12] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[13] 肖嵩, 刘明, 张小龙, 黄艳斐, 王海斗. 等离子喷涂熔滴铺展凝固行为研究现状[J]. 材料导报, 2024, 38(6): 22080031-12.
[14] 孙涛, 王辉, 张蕾, 刘晓英, 赵宏刚, 蒋伟, 成鑫磊, 何小涌. 基于折减因子的奥氏体不锈钢螺栓高温应力-应变模型[J]. 材料导报, 2024, 38(5): 23080049-9.
[15] 苏秉尧, 王斌, 侯林伟, 王恒, 赵建伟, 贺辛亥, 袁亚蓉. 柔性碳/三聚氰胺复合泡沫的电磁屏蔽与传感特性[J]. 材料导报, 2024, 38(5): 22070159-7.
[1] JIN Qinglin, WANG Yang, CAO Lei, SONG Qunling. Effect of Nitriding in Mushy Zone on the Nitrogen Content and Solidification Transformation of Cr10Mn9Ni0.7 Alloy[J]. Materials Reports, 2018, 32(4): 579 -583 .
[2] WANG Shengmin, ZHAO Xiaojun, HE Mingyi. Research Status and Development of Mechanical Plating[J]. Materials Reports, 2017, 31(5): 117 -122 .
[3] HE Yuandong, SUN Changzhen, MAO Weiguo, MAO Yiqi, ZHANG Honglong, CHEN Yanfei, PEI Yongmao, FANG Daining. Measurement of Transverse Piezoelectric Coefficients of Pb(Zr0.52Ti0.48)O3 Thin Films by a Mechano-electrical Multiphysics Coupling, Bulge Test Method[J]. Materials Reports, 2017, 31(15): 139 -144 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[6] QI Yaping, LUO Faliang, WANG Kezhi, SHEN Zhiyuan, WU Xuejian, WANG Diran. Effect of TMC-300 on the Performance of PLLA/PPC Alloy[J]. Materials Reports, 2018, 32(10): 1672 -1677 .
[7] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[8] DU Min, SONG Dian, XIE Ling, ZHOU Yuxiang, LI Desheng, ZHU Jixin. Electrospinning in Rechargeable Ion Batteries for High Efficient Energy Storage[J]. Materials Reports, 2018, 32(19): 3281 -3294 .
[9] LIU Xiao, XU Qian, LAI Guanghong, GUAN Jianan, XIA Chunlei, WANG Ziming, CUI Suping. Application Performances and Mechanism of Polycarboxylic Acid in Different Comb-bonded Structures in High-performance Concrete[J]. Materials Reports, 2018, 32(22): 4011 -4015 .
[10] ZHANG Di, YANG Di, XU Cui, ZHOU Riyu, LI Hao, LI Jing, WANG Peng. Study on Mechanism of Highly Effective Adsorption of Bisphenol F by Reduced Graphene Oxide[J]. Materials Reports, 2019, 33(6): 954 -959 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed