Please wait a minute...
材料导报  2025, Vol. 39 Issue (9): 24040013-6    https://doi.org/10.11896/cldb.24040013
  高分子与聚合物基复合材料 |
方腔内正十八烷相变材料凝固放热特性试验研究
曹世豪1,2,*, 赵锡佳1,2, 王方全1,2, 喻贤磊1,2, 杨荣山3
1 河南工业大学土木工程学院,郑州 450001
2 河南省粮油仓储建筑与安全重点实验室,郑州 450001
3 西南交通大学高速铁路线路工程教育部重点实验室,成都 610031
Experimental Study on Heat Release Properties of N-octadecane Phase Change Materials During Solidification in Square Cavity
CAO Shihao1,2,*, ZHAO Xijia1,2, WANG Fangquan1,2, YU Xianlei1,2, YANG Rongshan3
1 College of Civil Engineering, Henan University of Technology, Zhengzhou 450001, China
2 Henan Key Laboratory of Grain and Oil Storage Facility and Safety, HAUT, Zhengzhou 450001, China
3 MOE Key Laboratory of High-speed Railway Engineering, Southwest Jiaotong University, Chengdu 610031, China
下载:  全 文 ( PDF ) ( 23670KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 针对方腔内正十八烷相变材料的凝固放热特性问题开展研究。首先测试液相密度、动力黏度等与温度的关系,完善热物理参数。随后设计出正十八烷的凝固放热性能综合试验,测得温度时空分布特征以及凝固边界演化规律。建立流-固-热三场耦合计算模型,分析液相自然对流的影响。结果表明,液相密度与温度呈线性减小关系,动力黏度与温度呈二次多项式减小关系,而热膨胀系数介于9.03×10-4~9.55×10-4-1。在低温环境下,方腔内正十八烷的凝固边界呈现对称状向中心点蔓延,整个凝固放热过程可分为四个阶段,其中前两个阶段储能释放量占比达到97.1%,而液相自然对流传热仅对第一阶段有微弱的影响。此外,正十八烷的凝固放热效率与冷却温度呈四次多项式关系,其中15 ℃为最优冷却温度。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
曹世豪
赵锡佳
王方全
喻贤磊
杨荣山
关键词:  相变材料  正十八烷  凝固边界  温度  自然对流    
Abstract: In this work, the solidification heat release characteristics of n-octadecane phase change materials in square cavity was studied. Firstly, in order to improve the thermophysical parameters, the relation curves of liquid density, dynamic viscosity and temperature were measured. Then a comprehensive test of the solidification heat release of n-octadecane was designed, the temporal and spatial distribution characteristics of temperature were measured, as well as the evolution of solidification boundary. The results show that, the liquid density decreases linearly with temperature, the dynamic viscosity has a quadratic polynomial decreasing relationship with temperature, and the thermal expansion coefficient ranges from 9.03×10-4-1 to 9.55×10-4-1. In low temperature environment, the solidification boundary of n-octadecane in the square cavity spreads symmetrically towards the center point. The whole solidification heat release process can be divided into four stages, the energy storage release in the first two stages accounts for 97.1%, while the liquid phase natural convection heat transfer only has a weak influence on the first stage. In addition, there is a quartic polynomial relationship between the freezing efficiency and the cooling temperature, in which 15 ℃ is the optimal cooling temperature.
Key words:  phase change material    n-octadecane    solidification boundary    temperature    natural convection
出版日期:  2025-05-10      发布日期:  2025-04-28
ZTFLH:  TB34  
基金资助: 国家自然科学基金(52272442;51908197);河南省科技攻关项目(242102240026);河南省粮油仓储建筑与安全重点实验室开放课题(2024KF08)
通讯作者:  *曹世豪,博士,河南工业大学土木工程学院副教授、硕士研究生导师。目前主要从事增强相变储能复合材料设计等方面的研究。shcao@haut.edu.cn   
引用本文:    
曹世豪, 赵锡佳, 王方全, 喻贤磊, 杨荣山. 方腔内正十八烷相变材料凝固放热特性试验研究[J]. 材料导报, 2025, 39(9): 24040013-6.
CAO Shihao, ZHAO Xijia, WANG Fangquan, YU Xianlei, YANG Rongshan. Experimental Study on Heat Release Properties of N-octadecane Phase Change Materials During Solidification in Square Cavity. Materials Reports, 2025, 39(9): 24040013-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24040013  或          https://www.mater-rep.com/CN/Y2025/V39/I9/24040013
1 Peng H, Guo W, Li M, et al. Energy, 2021, 228, 1.
2 Cheng X, Mu R, Sun T, et al. Materials Reports, 2024, 38(5), 73 (in Chinese).
成鑫磊, 穆锐, 孙涛, 等. 材料导报, 2024, 38(5), 73.
3 Wang X, Lei W, Zhu J, et al. Materials Reports, 2023, 37(20), 198 (in Chinese).
王信刚, 雷为愉, 朱街禄, 等. 材料导报, 2023, 37(20), 198.
4 Kalidasan B, Pandey A, Rahman S, et al. Energies, 2023, 16(4), 1574.
5 Du Y, Zhou T, Zhao C, et al. International Journal of Heat and Mass Transfer, 2022, 182, 122.
6 Liu F, Wang J, Liu Y, et al. Journal of Energy Storage, 2022, 51, 104.
7 Najafpour N, Adibi O. Energy, 2024, 290, 130.
8 Chen J, Cao S. Journal of Engineering for Thermal Energy and Power, 2022, 37(8), 65 (in Chinese).
陈俊旗, 曹世豪. 热能动力工程, 2022, 37(8), 65.
9 Cao S, Wang H. Chinese Physics B, 2021, 30(10), 104.
10 Jiang K, He S, Zhan L, et al. Foundry Technology, 2023, 44(12), 1100 (in Chinese).
姜凯曦, 何生平, 詹磊, 等. 铸造技术, 2023, 44(12), 1100.
11 Huang L, Wu J, Guo J, et al. Iron Steel Vanadium Titanium, 2023, 44(4), 55 (in Chinese).
黄立清, 吴京洋, 郭杰, 等. 钢铁钒钛, 2023, 44(4), 55.
12 Liu J, Liu H, Chen W, et al. Fluid mechanics, Building Industry Press, China, 2023, pp. 13 (in Chinese).
刘京, 刘鹤年, 陈文礼, 等. 流体力学, 中国建筑工业出版社, 2023, pp. 13.
13 Abdi A, Ignatowicz M, Gunasekara S, et al. International Journal of Heat and Mass Transfer, 2020, 161, 120.
14 Moench S, Dittrich R. Energies, 2022, 15(8), 2746.
15 Biwole P, Groulx D, Souayfane F, et al. International Journal of Thermal Sciences, 2018, 124, 433.
[1] 郭幼丹, 程晓农. SAF2507双相不锈钢二次急冷淬火成形析出相的析出行为[J]. 材料导报, 2025, 39(9): 23100100-7.
[2] 王少辉, 李琦, 周梅梅, 杨春云, 谢会成, 吴玉庭, 鹿院卫. 咪唑离子液体基中低温相变材料热物性及储热应用[J]. 材料导报, 2025, 39(7): 23090077-14.
[3] 杨士冠, 陈树权, 王剑, 何俊松, 程林, 翟立军, 刘虹霞, 张艳, 孙志刚. 基于碲化铋的热电制冷器瞬态制冷规律研究[J]. 材料导报, 2025, 39(6): 24020052-16.
[4] 蒋力, 唐昭敏, 赵健清, 李世杰, 李昊宇, 杨怡宁, 潘皛, 王新茗. 原位可注射pH/温度双响应载药水凝胶的制备及抗肿瘤应用[J]. 材料导报, 2025, 39(6): 24010129-7.
[5] 张昌青, 马东东, 谷怀壮, 王栋, 刘恩荣, 张鹏省. 1060-H24纯铝无轴肩微型搅拌摩擦焊的数值模拟分析[J]. 材料导报, 2025, 39(5): 24020082-6.
[6] 龙勇, 王宇, 刘天乐, 王亚洲. 相变微胶囊保温砂浆的制备及性能[J]. 材料导报, 2024, 38(9): 22110170-6.
[7] 王丽红, 满蛟, 姜一鸣, 刘庚根, 周建平. 外加载荷对热弹性马氏体正-逆相变影响机制的相场模拟研究[J]. 材料导报, 2024, 38(8): 22070156-7.
[8] 彭鹏, 邵宇鹰, 胡海敏, 李振明, 刘伟. 基于碲化铋基柔性热电器件的自取能温度传感器结构设计及性能研究[J]. 材料导报, 2024, 38(6): 22080105-5.
[9] 马彬, 黄启钦, 肖薇薇, 黄小林. 钢渣-偏高岭土基导电地聚合物的压敏性能研究[J]. 材料导报, 2024, 38(6): 22040039-6.
[10] 肖嵩, 刘明, 张小龙, 黄艳斐, 王海斗. 等离子喷涂熔滴铺展凝固行为研究现状[J]. 材料导报, 2024, 38(6): 22080031-12.
[11] 马超, 解帅, 王永超, 冀志江, 吴子豪, 王静. 用于红外和雷达波隐身的水泥基复合材料[J]. 材料导报, 2024, 38(5): 23080165-9.
[12] 成鑫磊, 穆锐, 孙涛, 刘元雪, 胡志德, 蒋昊洋. 固液相变材料的封装制备及在建筑领域的研究进展[J]. 材料导报, 2024, 38(5): 23080048-15.
[13] 唐建辉, 白银, 陈徐东, 张伟. 温度对水性聚氨酯-混凝土宏微观粘结特性的影响[J]. 材料导报, 2024, 38(4): 22060045-6.
[14] 赵荣, 韩子夜, 吴飞翔, 刘太奇, 李谭秋. 基于十水硫酸钠的个体防护材料的制备及性能[J]. 材料导报, 2024, 38(3): 22090074-5.
[15] 刘悦卿, 赵江涛, 王凤青, 刘雷, 丁勇, 孙颖莉, 闫阿儒. 铝镍钴永磁材料的研究进展[J]. 材料导报, 2024, 38(23): 23080088-10.
[1] . Effect of Annealing on Crystalline Structure and Low-temperature Toughness of
Polypropylene Random Copolymer Dedicated Pipe Materials
[J]. Materials Reports, 2017, 31(4): 65 -69 .
[2] YAN Xin, HUI Xiaoyan, YAN Congxiang, AI Tao, SU Xinghua. Preparation and Visible-light Photocatalytic Activity of Graphite-like Carbon Nitride Two-dimensional Nanosheets[J]. Materials Reports, 2017, 31(9): 77 -80 .
[3] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[4] WANG Xinyu, ZHEN Siqi, DONG Zhengchao, ZHONG Chonggui. Electrocaloric Effects of Ferroelectric Materials: an Overview[J]. Materials Reports, 2017, 31(19): 13 -18 .
[5] WANG Bin, ZHANG Lele, DU Jinjing, ZHANG Bo, LIANG Lisi, ZHU Jun. Applying Electrothermal Reduction Method to the Preparation of V-Ti-Cr-Fe Alloys Serving as Hydrogen Storage Materials[J]. Materials Reports, 2018, 32(10): 1635 -1638 .
[6] GAO Wei, ZHAO Guangjie. Synergetic Oxidation Modification of Wooden Activated Carbon Fiber with Nitric Acid and Ceric Ammonium Nitrate[J]. Materials Reports, 2018, 32(9): 1507 -1512 .
[7] ZHANG Tiangang,SUN Ronglu,AN Tongda,ZHANG Hongwei. Comparative Study on Microstructure of Single-pass and Multitrack TC4 Laser Cladding Layer on Ti811 Surface[J]. Materials Reports, 2018, 32(12): 1983 -1987 .
[8] WANG Bilei, LI Yongcan, SONG Changjiang. A State-of-the-art Review on Yield Point Elongation Phenomenon of Low Carbon Steel[J]. Materials Reports, 2018, 32(15): 2659 -2665 .
[9] ZHU Yaming, ZHAO Chunlei, LIU Xian, ZHAO Xuefei, GAO Lijuan, CHENG Junxia. Study on the Basic Physical Properties of Toluene Soluble Extracted from Coal Tar Pitch[J]. Materials Reports, 2019, 33(2): 368 -372 .
[10] ZHOU Chao, LI Detian, ZHOU Hui, ZHANG Kaifeng, CAO Shengzhu. Non-evaporable Getter Films for Vacuum Packaging of MEMSDevices: an Overview[J]. Materials Reports, 2019, 33(3): 438 -443 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed