Please wait a minute...
材料导报  2025, Vol. 39 Issue (9): 23100100-7    https://doi.org/10.11896/cldb.23100100
  金属与金属基复合材料 |
SAF2507双相不锈钢二次急冷淬火成形析出相的析出行为
郭幼丹1,*, 程晓农2
1 集美大学海洋装备与机械工程学院,福建 厦门 361021
2 江苏大学材料科学与工程学院,江苏 镇江 212013
Precipitation Behaviors of SAF2507 Duplex Stainless Steel Precipitated Phase by Secondary Quench Stamping
GUO Youdan1,*, CHENG Xiaonong2
1 School of Marine Equipment and Mechanical Engineering, Jimei University, Xiamen 361021, Fujian, China
2 School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
下载:  全 文 ( PDF ) ( 20242KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用二次急冷淬火热成形技术进行SAF2507双相不锈钢(SAF2507 DSS)螺旋桨叶片成形,并采用扫描电镜(SEM)、EDAX能谱仪(EDS)、透射电子显微镜(TEM)等研究SAF2507 DSS热成形过程中析出相的析出行为。结果表明:SAF2507 DSS二次急冷淬火热成形中的析出相以σ相和χ相为主,其中,热成形温度与冷却速度是决定相的析出行为的关键因素。成形时,σ相和χ相的析出均存在着一个析出转变温度:当成形温度低于950 ℃时,σ相的析出随成形温度升高而增多,当成形温度高于950 ℃时,σ相的析出随成形温度升高而减少;当二次急冷淬火热成形温度低于850 ℃时,χ相的析出随成形温度升高而增多,当二次急冷淬火热成形温度高于850 ℃时,χ相停止析出并逐渐转换为σ相。急冷时,σ相和χ相有效形核并开始析出均存在一个析出临界冷却速度vσvχ,当冷却速度大于析出临界冷却速度时,σ相和χ相均不能有效地形核析出。此外,二次急冷淬火热成形时,SAF2507 DSS中Cr、Mo、Ni等元素的远程扩散与偏析,成形时表面氧化和表面氧化物情况和成形力作用下晶粒细化情况均会影响σ相和χ相的形核和析出。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郭幼丹
程晓农
关键词:  SAF2507双相不锈钢  二次急冷淬火成形  析出相  成形温度  临界冷却速度    
Abstract: The forming of SAF2507 duplex stainless steel (SAF2507 DSS) propeller blade was carried out by the technique of secondary quench stamping. The precipitated phase precipitation behavior during SAF2507 DSS forming was studied by scanning electron microscopy (SEM), EDAX energy dispersive spectrometer (EDS), transmission electron microscopy (TEM), etc. The results show that σ phase and χ phase are the main precipitates during SAF2507 DSS secondary quench stamping. The forming temperature and cooling rate are the key factors to determine the precipitation behavior. There exists a transition temperature for both σ and χ phase precipitation during secondary quench stamping. When the temperature is less than 950 ℃, the amount of σ phase increases with the increase of temperature, and when the temperature is greater than 950 ℃, the amount of σ phase decreases with the increase of temperature. When the temperature is less than 850 ℃, the amount of χ phase increases with the increase of temperature. When the temperature is more than 850 ℃, the precipitation of χ phase stopped and gradually transforms into σ phase. During rapid cooling, σ phase and χ phase nucleate and precipitate effectively, and there is a precipitation critical cooling rate vσ and vχ. When the cooling rate is greater than the critical cooling rate, neither σ phase nor χ phase can nucleate and precipitate effectively. In addition, many factors such as the long distance diffusion and segregation of Cr, Mo and Ni in SAF2507 DSS, surface oxidation and surface oxides, and grain refinement under forming force, can affect the nucleation and precipitation of σ phase and χ phase during the secondary quench stamping too.
Key words:  SAF2507 duplex stainless steel    secondary quench stamping    precipitated phase    stamping temperature    critical cooling rate
出版日期:  2025-05-10      发布日期:  2025-04-28
ZTFLH:  TG172.8  
  TG142.71  
基金资助: 国家自然科学基金(50772044);福建省科技计划引导性重点项目(2016H0023);福建省自然科学基金(2014J01200)
通讯作者:  *郭幼丹,集美大学海洋装备与机械工程学院教授、硕士研究生导师。目前主要从事金属材料微观结构、金属材料热处理及表面强化与改性、金属材料精密成形等方面的研究。chjmu@163.com   
引用本文:    
郭幼丹, 程晓农. SAF2507双相不锈钢二次急冷淬火成形析出相的析出行为[J]. 材料导报, 2025, 39(9): 23100100-7.
GUO Youdan, CHENG Xiaonong. Precipitation Behaviors of SAF2507 Duplex Stainless Steel Precipitated Phase by Secondary Quench Stamping. Materials Reports, 2025, 39(9): 23100100-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.23100100  或          https://www.mater-rep.com/CN/Y2025/V39/I9/23100100
1 Feng H, Zhou X Y, Liu H, et al. Journal of Iron and Steel Research, 2015, 27(4), 1 (in Chinese).
丰涵, 周晓玉, 刘虎, 等. 钢铁研究学报, 2015, 27(4), 1.
2 Verma J, Taiwade R V, Khatirkar R K. Transactions of the Indian institute of Metals, 2017, 70, 225.
3 Wang L X, Petrochemical Equipment Technology, 2017, 38(2), 54 (in Chinese).
王兰喜. 石油化工设备技术, 2017, 38(2), 54.
4 Zhang P, Chen X Q, Shang F, et al. Hot Working Technology, 2018, 47(15), 14 (in Chinese).
张鹏, 陈晓秋, 尚峰, 等. 热加工工艺, 2018, 47(15), 14.
5 Yi H L, Chang Z Y, Cai H L, et al. Acta Metallurgica Sinica, 2020, 56(4), 429 (in Chinese).
易红亮, 常智渊, 才贺龙, 等. 金属学报, 2020, 56(4), 429.
6 Jiang H T, Tang D, Mi Z L, et al. Journal of Materials Engineering, 2010(2), 69 (in Chinese).
江海涛, 唐荻, 米振莉, 等. 材料工程, 2010(2), 69.
7 Han Y, Chen X D, Liu Q K, et al. Journal of Mechanical Engineering, 2012, 48(21), 87 (in Chinese).
韩豫, 陈学东, 刘全坤, 等. 机械工程学报, 2012, 48(21), 87.
8 Guo Y D, Cheng X N, Lan J F et al. Transactions of materials and heattreatment, 2017, 38(10), 60 (in Chinese).
郭幼丹, 程晓农, 蓝剑锋, 等. 材料热处理学报, 2017, 38(10), 60.
9 Huang C S, Shih C C. Materials Science and Engineering A, 2005, 402, 66.
10 Liu Z B, Liang J X, Su J, et al. Acta Metallurgica Sinica, 2020, 56(4), 549 (in Chinese).
刘振宝, 梁剑雄, 苏杰, 等. 金属学报, 2020, 56(4), 549.
11 Wang G. Research of hot forming on microstructure and properties of high strength stainless steel propeller. Master’s Thesis, Jimei University, China, 2015 (in Chinese).
王刚. 高强度不锈钢螺旋桨热成形微观结构与性能的研究. 硕士学位论文, 集美大学, 2015.
12 Guo Y D. Key Engineering Materials, 2016, 693, 800.
13 Ma N, Zhang Z H, Hu P, et al. Journal of Materials Engineering, 2011(5), 88 (in Chinese).
马宁, 张宗华, 胡平, 等. 材料工程, 2011(5), 88.
14 Lu C X, Yi H Y, Liang T, et al. Rare Metal Materials and Engineering, 2021, 50(1), 187 (in Chinese).
陆成旭, 易昊钰, 梁田, 等. 稀有金属材料与工程, 2021, 50(1), 187.
15 Guo Y D, Wang D Z, Wu H F, et al. Ship Engineering, 2019, 41(11), 105 (in Chinese).
郭幼丹, 王大镇, 吴华峰, 等. 船舶工程, 2019, 41(11), 105.
16 Guo Y D, Cheng X N. Rare Metal Materials and Engineering, 2022, 51(6), 2258 (in Chinese).
郭幼丹, 程晓农. 稀有金属材料与工程, 2022, 51(6), 2258.
17 Sun Q, Wang J, Li, H B. Journal of Iron and Steel Research International, 2016, 23, 1071.
18 Li H, Song Z G, Feng H, et al. Special Steel, 2015, 36(3), 57 (in Chinese).
李惠, 宋志刚, 丰涵, 等. 特殊钢, 2015, 36(3), 57.
19 He L, Wu X Y, Hang Z Y. International Journal of Electrochemical Science, 2016, 11, 8046.
20 Wu Tianhai. The precipitation of σ phase and its influence on microstructure and properties in 2205 duplex stain less steel. Master’s Thesis, Northeastern University, China, 2013 (in Chinese).
吴天海. 2205双相不锈钢中σ相的析出及其对组织性能的影响, 硕士学位论文, 东北大学, 2013.
21 Yang Y H, Yan B, Zheng X. Materials Reports, 2011, 25(19), 105 (in Chinese).
杨银辉, 严彪, 郑鑫. 材料导报, 2011, 25(19), 105.
[1] 谭会杰, 王海燕, 华连庚, 高雪云, 吕萌, 于大威, 邢磊. 稀土Ce对Fe-Ni-Al马氏体时效钢等温过程显微组织演变的影响[J]. 材料导报, 2025, 39(7): 24010236-6.
[2] 吕润涛, 周张健, 白冰, 杨文. 耐老化马氏体时效不锈钢纳米析出相和逆变奥氏体调控研究进展[J]. 材料导报, 2024, 38(4): 22120065-7.
[3] 王沛锦, 卓家乐, 艾桃桃, 董洪峰. L12型纳米有序相析出强化(FeNiCoCr)93Al5Ti2高熵合金[J]. 材料导报, 2024, 38(22): 23110207-5.
[4] 刘洪亮, 郭志迎, 袁晓峰, 朱尊伟, 高倩倩, 张忻. 熔体旋甩工艺对Mg2(Si0.4Sn0.6)Sb0.015固溶体微结构和热电性能的影响研究[J]. 材料导报, 2024, 38(12): 22090010-5.
[5] 孙钢, 熊茹, 唐睿, 张乐福, 周张健. 含铝奥氏体不锈钢的强化相析出调控和蠕变性能研究进展[J]. 材料导报, 2023, 37(9): 21060054-7.
[6] 卢超, 曹建春, 陈伟, 刘星, 张永青, 阴树标. 再加热温度对Nb微合金化钢筋连续冷却相变及组织与性能的影响[J]. 材料导报, 2023, 37(8): 21100016-8.
[7] 余瑞, 张永安, 李亚楠, 李锡武, 李志辉, 闫丽珍, 温凯, 熊柏青. Zn对Al-Mg-Si合金时效析出相稳定性影响的第一性原理研究[J]. 材料导报, 2023, 37(4): 21040034-5.
[8] 曹宇, 白朴存, 刘飞, 侯小虎. 选区激光熔化IN718合金固溶过程成分均匀化规律的研究[J]. 材料导报, 2023, 37(21): 22040096-7.
[9] 李帅贞, 韩晓辉, 吴来军, 刘裕航, 王鹏, 宋晓国, 檀财旺. 层道排布对6005A铝合金MIG焊接头微观组织及力学性能的影响[J]. 材料导报, 2022, 36(17): 21060094-5.
[10] 封帆, 王美玲, 李振华, 陆永浩. 超超临界机组用HR3C奥氏体耐热钢研究进展[J]. 材料导报, 2021, 35(9): 9186-9195.
[11] 刘成龙, 唐正友, 马亮, 马婉婉, 郭昊东, 丁桦. 254SMo超级奥氏体不锈钢时效析出行为及析出相对其力学性能的影响[J]. 材料导报, 2021, 35(24): 24147-24151.
[12] 李钊, 吴润. 钢中强化析出相的理论基础及其应用研究进展[J]. 材料导报, 2020, 34(Z2): 412-417.
[13] 马启慧,王清,董闯. Co-Al-W基高温合金发展概述[J]. 材料导报, 2020, 34(3): 3157-3164.
[14] 何翠云, 莫文锋, 罗兵辉, 柏镇海, 张鑫. 均匀化处理对2A12铝合金组织及性能的影响[J]. 材料导报, 2020, 34(12): 12083-12087.
[15] 王铁军, 秦巍, 陈永庆, 闫英杰, 曹睿, 梁晨, 董浩, 车洪艳. Al和Mo含量对热等静压制备的FeCrAlMo合金组织及拉伸性能的影响[J]. 材料导报, 2020, 34(12): 12105-12109.
[1] Pei HE, Weizhi YAO, Jianming LYU, Bo GAO, Xianrong LI. Radiation Resistance Design and Nanoscale Second-phase Particles Characterization for ODS Steels: a Review[J]. Materials Reports, 2018, 32(1): 34 -40 .
[2] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
[3] YANG Xiaojie, DONG Binghai, CHEN Fengxiang, WAN Li, ZHAO Li, WANG Shimin. One-dimensional TiO2 Photoanodes for Dye-sensitized Solar Cells: Fabrication and Applications[J]. Materials Reports, 2017, 31(17): 138 -145 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] ZHU Lijuan, WANG Min, GU Zhengwei, HE Lingling. Research on Stretch Bending Forming of Stainless Steel Curved Beam[J]. Materials Reports, 2017, 31(24): 179 -181 .
[6] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] FU Yu, HE Junbao, ZHANG Ping, LENG Yumin, MA Benyuan, LI Jiyan. Single Crystal Growth and Physical Properties of Layered Transitional Metal Bismuthide BaAg2-δBi2[J]. Materials Reports, 2018, 32(12): 2043 -2046 .
[9] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[10] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed