Please wait a minute...
材料导报  2025, Vol. 39 Issue (6): 24020052-16    https://doi.org/10.11896/cldb.24020052
  无机非金属及其复合材料 |
基于碲化铋的热电制冷器瞬态制冷规律研究
杨士冠1,2, 陈树权3, 王剑3,4, 何俊松1,2, 程林1,2, 翟立军1,2, 刘虹霞1,2, 张艳1,2, 孙志刚1,2,3,*
1 太原科技大学材料科学与工程学院,太原 030024
2 太原科技大学,山西省磁电功能材料与应用重点实验室,太原 030024
3 武汉理工大学材料复合新技术国家重点实验室,武汉 430070
4 武汉理工大学襄阳示范区,湖北隆中实验室,湖北 襄阳 441000
Study on Transient Cooling Law of Thermoelectric Cooler Based on Bismuth Telluride
YANG Shiguan1,2, CHEN Shuquan3, WANG Jian3,4, HE Junsong1,2, CHENG Lin1,2, ZHAI Lijun1,2, LIU Hongxia1,2, ZHANG Yan1,2, SUN Zhigang1,2,3,*
1 College of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China
2 Key Laboratory of Magnetoelectric Functional Materials and Applications, Taiyuan University of Science and Technology, Taiyuan 030024, China
3 State Key Laboratory of New Material Composite Technology, Wuhan University of Technology, Wuhan 430070, China
4 Hubei Longzhong Laboratory, Xiangyang Demonstration Area, Wuhan University of Technology, Xiangyang 441000, Hubei, China
下载:  全 文 ( PDF ) ( 7044KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 提出了一种基于相变材料和脉冲电流来提高热电制冷器瞬态制冷温度的方案。制冷器的散热端设计为翅鞘结构,内部填充相变材料,并且底部带有孔洞,相变材料吸热融化后从底部流出,通过程序控制向散热器中添加相变材料使热电制冷器可以持续工作。建立了热电制冷器件的三维传热模型,研究了脉冲电流的波形、脉冲宽度、脉冲比以及有无相变材料对热电制冷性能的影响。结果表明,在无相变材料的条件下,与恒定电流相比,脉冲电流使热电制冷器达到更低的制冷温度,冷端最低温度从-6.30 ℃显著降低到-14.01 ℃。有相变材料时,冷端最低温度从-14.01 ℃进一步降低到-17.74 ℃,过冷面积增大了48.43%。研究表明,方形脉冲具有最优的制冷温度和过冷面积。当方形脉冲宽度为26 s、脉冲比为2.5时,冷端最低制冷温度可以达到-17.74 ℃。当脉冲比进一步增大时,由于冷热侧温差增大,热电制冷器的制冷温度进一步降低。当脉冲宽度增大时,过冷面积变大,制冷温度和制冷系数都会降低。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨士冠
陈树权
王剑
何俊松
程林
翟立军
刘虹霞
张艳
孙志刚
关键词:  脉冲电流  相变材料  热电制冷器  COMSOL Multiphysics    
Abstract: A program to increase the transient cooling temperature of a thermoelectric cooler based on phase change material and pulse current was proposed. The heat sink end of the cooler was designed as a fin-sheath structure, filled with phase change material and with holes at the bottom, the phase change material absorbed heat and melted and flowed out from the bottom, and the thermoelectric coolerworked continuously by adding phase change material to the heat sink through program control. We established a three-dimensional heat transfer model of the thermoelectric cooler device, and investigated the effects of pulse current waveform, pulse width, pulse ratio, and the presence or absence of phase change material on the thermoelectric cooling performance. The results showed that in the absence of phase change material, the pulsed current enabled the thermoelectric cooler to achieve a lower cooling temperature compared with the constant current, with the minimum temperature at the cold end significantly reduced from -6.30 ℃ to -14.01 ℃. In the presence of a phase change material, the minimum temperature at the cold end was further reduced from -14.01 ℃ to -17.74 ℃, and the subcooling area was improved by 48.43%. It is shown that the square pulse has the optimum cooling temperature and subcooling area. When the square pulse width was 26 s and the pulse ratio was 2.5, the minimum cooling temperature at the cold side reached -17.74 ℃. When the pulse ratio is further increased, the cooling temperature of the thermoelectric cooler is further reduced due to the increased temperature difference between the hot and cold sides. When the pulse width increases, the subcooling area becomes larger and both the cooling temperature and the cooling coefficient decrease.
Key words:  pulsed current    phase change material    thermoelectric cooler    COMSOL Multiphysics
出版日期:  2025-03-25      发布日期:  2025-03-24
ZTFLH:  TB34  
  TB32  
  TB66  
  TB69  
基金资助: 国家自然科学基金(12174297;12204342);山西省基础研究计划(202103021224283; 202203021212323)
通讯作者:  *孙志刚,太原科技大学材料科学与工程学院教授、博士研究生导师。目前主要从事热电半导体材料、磁学研究。sun_zg@whut.edu.cn   
作者简介:  杨士冠,太原科技大学材料科学与工程学院硕士研究生,在孙志刚教授的指导下进行研究。目前主要研究领域为热电材料。
引用本文:    
杨士冠, 陈树权, 王剑, 何俊松, 程林, 翟立军, 刘虹霞, 张艳, 孙志刚. 基于碲化铋的热电制冷器瞬态制冷规律研究[J]. 材料导报, 2025, 39(6): 24020052-16.
YANG Shiguan, CHEN Shuquan, WANG Jian, HE Junsong, CHENG Lin, ZHAI Lijun, LIU Hongxia, ZHANG Yan, SUN Zhigang. Study on Transient Cooling Law of Thermoelectric Cooler Based on Bismuth Telluride. Materials Reports, 2025, 39(6): 24020052-16.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24020052  或          https://www.mater-rep.com/CN/Y2025/V39/I6/24020052
1 Gao Y W, Shi C L, Wang X D. Applied Thermal Engineering, 2019, 163, 114416.
2 Zhao D L, Tan G. Applied Thermal Engineering 2014, 66 (1-2), 15.
3 Montes J L, Ortiz J J, Requena I, et al. Annals of Nuclear Energy, 2004, 31 (16), 1939.
4 Riffat S B, Ma X. Applied Thermal Engineering, 2003, 23 (8), 913.
5 Chen S Q, Wang J, Yang Z, et al. Acta Physica Sinica, 2023, 72(6), 068401(in Chinese).
陈树权, 王剑, 杨振, 等. 物理学报, 2023, 72 (6), 068401.
6 Zhu X Q, Wang J, Zhu C, et al. Acta Physica Sinica, 2023, 72 (17), 177102(in Chinese).
祝鑫强, 王剑, 朱璨, 等. 物理学报, 2023, 72 (17), 177102.
7 Liu H X, Zhang S, Zhang Y, et al. ACS Applied Energy Materials, 2022, 5 (12), 15093.
8 Luo F, Zhu C, Wang J, et al. ACS Applied Materials & Interfaces, 2022, 14 (40), 45503.
9 Wang J, Luo F, Zhu C, et al. Journal of Materials Chemistry C, 2023, 11 (12), 4056.
10 Wang J, Zhu C, Luo F, et al. ACS Applied Materials & Interfaces, 2023, 15 (6), 8105.
11 Wang J, Luo F, Zhu C, et al. Journal of Applied Physics, 2022, 132 (13), 135103.
12 Xu F, Zhu C, Wang J, et al. Journal of Alloys and Compounds, 2023, 960, 170768.
13 Yang Z, He B, He X, et al. Energy Conversion and Management, 2022, 267, 115871.
14 Yang Z, Zhu C, Ke Y J, et al. Acta Physica Sinica, 2021, 70 (10), 108402(in Chinese).
杨振, 朱璨, 柯亚娇, 等. 物理学报, 2021, 70 (10), 108402.
15 Zhu C, Wang J, Zhu X, et al. Journal of Materials Chemistry A, 2023, 11(3), 1268.
16 Zhang S, Zhu C, He X, et al. Journal of Alloys and Compounds, 2022, 910, 164900.
17 Zhu C, Wang J, Luo F, et al. ACS Applied Materials & Interfaces, 2022, 14(34), 38854.
18 Zhu C, Luo F, Wang J, et al. Journal of Materials Chemistry C, 2022, 10(23), 9052.
19 He J S, Shen Y C, Zhai L J, et al. Journal of Alloys and Compounds, 2024, 975, 172808.
20 Yang J W, Mou C Y, Han J, et al. Energy Conversion and Management, 2023, 298, 117760.
21 Sahin A Z, Yilbas B S. Energy Conversion and Management, 2013, 65, 26.
22 Ali H, Sahin A Z, Yilbas B S. Energy Conversion and Management, 2014, 78, 634.
23 Shen Z G, Wu S Y, Xiao L. Energy Conversion and Management, 2015, 89, 244.
24 Kaushik S C, Manikandan S. Energy Conversion and Management, 2015, 103, 200.
25 Manikandan S, Kaushik S C. Energy Conversion and Management, 2015, 106, 804.
26 Manikandan S, Kaushik S C. Journal of Electronic Materials, 2016, 46 (5), 2560.
27 Chen L G, Wu C, Sun F. Applied Thermal Engineering, 1996, 16 (12), 989.
28 Chen L G, Li J, Sun F R, et al. Journal of Applied Physics, 2005, 98(3), 034507.
29 Du K, Calautit J, Wang Z, et al. Applied Energy, 2018, 220, 242.
30 Ding T L, Wei S, Ren X, et al. Construction and Building Materials, 2024, 417, 135302.
31 Cheng Z, Li S, Tong X, et al. International Communications in Heat and Mass Transfer, 2024, 152, 107280.
32 Ruiz-Ortega P E, Olivares-Robles M A. Energy Conversion and Management, 2021, 243, 114355.
33 Selvam C, Manikandan S, Kaushik S C, et al. Energy Conversion and Management, 2019, 198, 111822.
34 Pakrouh R, Ranjbar A A, Hosseini M J, et al. Applied Thermal Engineering, 2023, 231, 120925.
35 Guo Y H, Zhang X, Wang J, et al. e-Prime-Advances in Electrical Engineering Electronics and Energy, 2023, 4, 100163.
36 Gao Y W, Shi C L, Wang X D. Applied Thermal Engineering, 2021, 182, 116090.
37 Fan S F, Rezania A, Gao Y. Applied Thermal Engineering, 2022, 214, 118910.
38 Lam T T, Yeung W K. Thermal Science and Engineering Progress, 2021, 22, 100747.
39 Li W K, Chang J H, Amani M, et al. Case Studies in Thermal Engineering, 2019, 14, 100509.
40 Yang R G, Chen G, Ravi K A, et al. Energy Conversion and Management, 2005, 46(9-10), 1407.
41 Meng J H, Wu H C, Gao D Y, et al. Energy, 2021, 217, 119360.
42 Yang X P, Zhang Z H, Cai Z D, et al. Applied Thermal Engineering, 2022, 213, 118748.
43 Rajaee F, Rad M A V, Kasaeian A, et al. Energy Conversion and Management, 2020, 212, 112780.
44 Gharbi S, Harmand S, Ben J S. Applied Thermal Engineering, 2015, 87(1), 454.
45 Carter M J, El-Desouky A, Andre M A, et al. Journal of Manufacturing Processes, 2019, 43, 35.
46 Cao Y, Abbas M, El-Shorbagy M A, et al. Case Studies in Thermal Engineering, 2022, 36, 102230.
47 Liu T L, Huang J C, Zhang Q Y, et al. Diamond and Related Materials, 2023, 140 110446.
48 Manikandan S, Selvam C, Poddar N, et al. Journal of Cleaner Production, 2019, 219, 359.
49 Manikandan S, Kaushik S C, Yang R. Energy Conversion and Management, 2017, 140, 145.
[1] 龙勇, 王宇, 刘天乐, 王亚洲. 相变微胶囊保温砂浆的制备及性能[J]. 材料导报, 2024, 38(9): 22110170-6.
[2] 马超, 解帅, 王永超, 冀志江, 吴子豪, 王静. 用于红外和雷达波隐身的水泥基复合材料[J]. 材料导报, 2024, 38(5): 23080165-9.
[3] 成鑫磊, 穆锐, 孙涛, 刘元雪, 胡志德, 蒋昊洋. 固液相变材料的封装制备及在建筑领域的研究进展[J]. 材料导报, 2024, 38(5): 23080048-15.
[4] 赵荣, 韩子夜, 吴飞翔, 刘太奇, 李谭秋. 基于十水硫酸钠的个体防护材料的制备及性能[J]. 材料导报, 2024, 38(3): 22090074-5.
[5] 姜绍飞, 林金星, 宋华霖, 王威, 陈敏文. 基于多物理场耦合的大气环境下碳钢点蚀演化及速率预测模型[J]. 材料导报, 2024, 38(19): 23060012-7.
[6] 张维, 张义博, 张琪, 姚继明, 郝尚. PDMS包封CPCM制备三明治结构织物及热性能分析[J]. 材料导报, 2024, 38(19): 23050176-5.
[7] 曾关跃, 高专, 熊玉竹. 多壁碳纳米管负载银/微晶纤维素定型复合相变材料的制备及性能研究[J]. 材料导报, 2023, 37(23): 22040102-6.
[8] 方桂花, 赵茂森, 孙鹏博. 基于棕榈酸-硬脂酸/膨胀石墨定形复合相变储能材料的制备与表征[J]. 材料导报, 2023, 37(20): 22030005-7.
[9] 宫兴, 英红, 梁凤芯, 刘卫东, 许修权. 降低沥青路面温度的双向热诱导相变结构研究[J]. 材料导报, 2023, 37(13): 21040242-6.
[10] 马驰, 曹流, 张东. 定向导热的石墨烯气凝胶相变复合材料的研究[J]. 材料导报, 2023, 37(1): 21080077-6.
[11] 林伯, 句子涵, 胡定华, 李强. 基于泡沫铜骨架高导热复合相变储热材料的热性能研究[J]. 材料导报, 2022, 36(Z1): 21110168-5.
[12] 张东尧, 白开皓, 李传常. 复合相变织物的制备及应用[J]. 材料导报, 2022, 36(8): 20080153-6.
[13] 魏宁, 铁生年. 功能化碳纳米纤维增强芒硝基相变储能材料的热性能[J]. 材料导报, 2022, 36(6): 21050177-7.
[14] 郑灵钰, 章学来, 纪珺. 定型阻燃相变储热材料的研究进展[J]. 材料导报, 2022, 36(5): 20100275-8.
[15] 陈鑫, 刘凌云, 陶马冠宇, 王晓光, 柳建军. 用于电机散热的定形复合相变材料研究[J]. 材料导报, 2022, 36(19): 21060037-7.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[5] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[6] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[7] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[8] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[9] Yan MA,Zhi LI,Ruilong RAN,Kang LI. Research on Application of Silk in Biomaterial Field[J]. Materials Reports, 2018, 32(1): 86 -92 .
[10] Kui ZHENG,Changlai YUAN,Xingxing ZHOU,Weiqing WANG,Jiwen XU,Changrong ZHOU. Microstructures and Energy-storage Properties of Ba0.04Bi0.48Na0.48TiO3-SrTiO3 Ceramics[J]. Materials Reports, 2018, 32(2): 171 -175 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed