Preparation and Properties of Silver-loaded Multi-walled Carbon Nanotube/Microcrystalline Cellulose Stereotyped Composite Phase Change Materials
ZENG Guanyue1, GAO Zhuan1, XIONG Yuzhu1,2,*
1 School of Materials and Metallurgy, Guizhou University, Guiyang 550025, China 2 Guizhou Province Engineering Laboratory for Rubber Composites, Guizhou University, Guiyang 550025, China
Abstract: The use of phase change materials to store thermal energy is an effective way to improve the efficiency of traditional energy utilization and develop various new energy sources. Solid-liquid phase change energy storage materials have the advantages of low cost, wide range of solidification point adjustment and large enthalpy of phase change, which make them become one of the most widely used phase change materials among phase change materials. However, the low thermal conductivity and leakage problems occur during the use of phase change materials, which greatly limit the practical application of phase change materials. To solve the above problems, oxidized carbon nanotubes (O-MWCNTs) loaded with silver nanoparticles were introduced into a microcrystalline cellulose (MCC) matrix to prepare a three-dimensional porous skeleton of microcrystalline cellulose/multi-walled carbon nanotubes loaded with silver (MCC/Ag-MWCNTs) in this work, and the MCC/Ag-MWCNTs/PA(Ag-PMCT) composite phase change material was obtained by adsorbing palmitic acid (PA) on the MCC/Ag-MWCNTs composite framework, abundant silver nanoparticles on O-MWCNTs form micro ‘bridges' on carbon nanotubes, thus constructing a complete thermal conduction path, which further improved the thermal storage performance of the composite phase change material. At the same time, the MCC/Ag-MWCNTs composite 3D skeleton exhibits good encapsulation effect and shape stability. The Ag-PMCT composite phase change materials prepared in this paper have potential applications in the field of energy saving in buildings and thermal management of electronic devices, and provide a new idea for the enhancement of thermal conductivity of phase change materials by carbon based materials and metal particles together.
通讯作者:
* 熊玉竹,博士,教授,博士研究生导师。2009年获四川大学材料学工学博士学位,担任《橡胶工业》编委,担任多家国际期刊审稿人,主要致力于聚合物基复合材料结构与性能研究。在Composites Part A: Applied Science and Manufacturing、ACS Omega、Progress in Organic Coatings、Chemical Engineering Journal、Chemosphere、Separation and Purification Technology、Journal of Materials Science、Journal of Water Process Engineering等期刊上发表多篇论文。xyzhu789@126.com
1 Trenchard H, Perc M. Biosystems, 2016, 147, 40. 2 Sharon H, Reddy K S. Renewable & Sustainable Energy Reviews, 2015, 41, 1080. 3 González J, Arántegui R. Renewable and Sustainable Energy Reviews, 2016, 56, 588. 4 Khan N, Kalair A, Abas N, et al. Renewable and Sustainable Energy Reviews, 2017, 72,590. 5 Hammar L, Gullstrom M, Dahlgren T G, et al. Renewable & Sustainable Energy Reviews, 2017, 74, 178. 6 Yu M, Hong S H. Applied Energy, 2016, 164, 702. 7 Zhang H, Baeyens J, Caceres G, et al. Progress in Energy and Combustion Science, 2016, 53, 1. 8 Lefebvre D, Tezel F H. Renewable and Sustainable Energy Reviews, 2017, 67, 116. 9 Su W, Darkwa J, Kokogiannakis G, et al. Renewable & Sustainable Energy Reviews, 2015, 48, 373. 10 Sharma R K, Ganesan P, Tyagi V V, et al. Energy Conversion & Management, 2015, 95,193. 11 Fang G, Tang F, Cao L, et al. Renewable & Sustainable Energy Reviews, 2014, 40, 237. 12 Xiao Da, Qu Yuanyuan,Hu Shuchun, et al. Composites Part A: Applied Science & Manufacturing, 2015, 77, 50. 13 Kim P, Shi L, Majumdar A, et al. Physical Review Letters, 2001, 87(21), 215502. 14Shenogin S, Bo Da Pati A, Xue L, et al. Applied Physics Letters, 2004, 85(12), 2229. 15 Christopher S, Parham K, Mosaffa A H, et al. Journal of Cleaner Production, 2021, 283, 124653. 16 Esfahani M N, Jabbari M, Xu Y, et al. Materials Today Communications, 2021, 26, 101856. 17 Cui X, Li C M, Bao H, et al. Journal of Physical Chemistry C, 2008, 112(29), 10730. 18 Nguyen V H, Shim J J. Synthetic Metals, 2011, 161(19-20), 2078. 19 Lei Y, Gao G, Liu W, et al. Applied Surface Science, 2014, 317, 49. 20 Zhang Y, Liu L, Shi L, et al. Electrochimica Acta, 2019, 313,561. 21 Chiang I W, Brinson B E, Smalley R E, et al. Journal of Physical Che-mistry B, 2012, 105(6), 1157. 22 Ma P C, Kim J K, Tang B Z.In: 2006 International Conference on Kowloon. China, 2006, pp.128. 23 Ji P,Sun H, Zhong Y, et al. Chemical Engineering Science, 2012, 81, 140. 24 Yao Y, Zeng X, Sun R, et al. ACS Applied Materials & Interfaces, 2016, 15645. 25 Sar A, Karaipekli A. Solar Energy Materials & Solar Cells, 2009, 93(5), 571. 26 Yang J, Li X, Han S,et al. Journal of Materials Chemistry A, 2016, 4(46), 18067. 27 Yu R L, Raghu A V, Han M J, et al. Macromolecular Chemistry & Phy-sics, 2010, 210(15), 1247. 28 Yang J, Li X, Han S, et al. Journal of Materials Chemistry A Materials for Energy & Sustainability, 2018, 6(14), 5880. 29 Gao L, Sun X, Sun B, et al. Journal of Thermal Analysis and Calorimetry, 2020, 141(1), 25. 30 Zhang N, Yuan Y, Yuan Y, et al. Solar Energy, 2014, 110, 64. 31 Li X L. Composites Part A: Applied Science and Manufacturing, 2011,42(8), 961. 32 Yang S, Xue B, Li Y, et al. Chemical Engineering Journal, 2019, 383, 123072. 33 Mayavan S, Sim J B, Choi S M. Carbon, 2012, 50(14), 5148.