Please wait a minute...
材料导报  2022, Vol. 36 Issue (6): 21050177-7    https://doi.org/10.11896/cldb.21050177
  无机非金属及其复合材料 |
功能化碳纳米纤维增强芒硝基相变储能材料的热性能
魏宁1, 铁生年2
1 青海大学化工学院,西宁 810016
2 青海大学新能源光伏产业研究中心,西宁 810016
Functionalized Carbon Nanofibers Enhance the Thermal Properties of Glauber's Salt-based Phase Change Energy Storage Materials
WEI Ning1, TIE Shengnian2
1 College of Chemical Engineering, Qinghai University, Xining 810016, China
2 New Energy (Photovoltaic) Industry Research Center, Qinghai University, Xining 810016, China
下载:  全 文 ( PDF ) ( 8262KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 无机水合盐相变储能材料较低的导热系数导致了其缓慢的吸放热速率,限制了水合盐的实际应用。本工作以芒硝(Na2SO4·10H2O)为相变材料、聚丙烯酸钠(PSA)为支撑材料,利用硼砂改善相变体系的过冷度,借助高导热的碳纳米纤维(CNFs)来提升复合相变材料的导热系数。从SEM图中可知,CNFs-Na2SO4·10H2O/PSA被成功制备,且芒硝和功能化的CNFs嵌入到PSA形成的三维网络结构中。拉曼光谱和红外光谱的结果表明相变体系各组分之间具有良好的化学相容性。DSC曲线表明,聚丙烯酸钠与芒硝之间的相互作用使得体系相变行为得到调整,Na2SO4·10H2O/PSA的熔融焓和结晶焓分别为197.2 J/g 和137.0 J/g。与Na2SO4·10H2O/PSA相比,CNFs-Na2SO4·10H2O/PSA的导热系数得到显著提升,固态热导率达到1.2 W/(m·K)左右,液态热导率达到1.0 W/(m·K)左右。此外,经过300次的循环试验,复合相变材料的熔融焓和结晶焓分别下降了23.3%、28.8%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
魏宁
铁生年
关键词:  芒硝  相变材料  碳纳米纤维  功能化  相变行为  导热系数    
Abstract: The low thermal conductivity is a hindrance to salt hydrate as it leads to slow rates of heat absorption and release, which limits the practical application of inorganic hydrate salts. In this work, a series of Na2SO4·10H2O/PSA composite materials with different weight ratios were fabricated by using the Na2SO4·10H2O as phase change materials and polyacrylic acid sodium as a supporting materials, and by adding carbon nanofibers to enhance thermal conductivity. Scanning electron microscopy micrographs revealed that composite PCMs have been successfully prepared, and Na2SO4·10H2O and functionalized carbon nanofibers are embedded in 3D networks of PSA, the above three materials bonding together to form a smooth network structure. FTIR and Raman spectra results indicated that there were no chemical interactions between components in phase transition system. Differential scanning calorimetry suggested that phase transition behavior of the system was adjusted by the interaction between polyacrylic acid sodium and Na2SO4·10H2O, as melting and crystallization enthalpy are 197.2 J/g and 137.0 J/g, respectively. Compared with Na2SO4·10H2O/PSA, thermal conductivity of CNFs-Na2SO4·10H2O/PSA significantly increased, of which thermal conductivity of solid state reached about 1.2 W/(m·K) and thermal conductivity of liquid state was about 1.0 W/(m·K). Moreover, after 300 thermal cycles, melting and crystallization enthalpy of composite phase change materials decreased by 23.3% and 28.8% respectively.
Key words:  Na2SO4·10H2O    phase change materials    carbon nanofibers    functional    phase transition behaviors    thermal conductivity
出版日期:  2022-03-25      发布日期:  2022-03-21
ZTFLH:  TQ12  
  TB34  
基金资助: 青海省自然基金项目(2020-ZJ-909);材料复合新技术国家重点实验室(武汉理工大学)开放基金项目(2020-KF-1)
通讯作者:  tieshengnian@163.com   
作者简介:  魏宁,青海大学应用化学专业研究生,主要研究方向为相变储能材料。
铁生年,教授,博士研究生导师,青海大学新能源光伏产业研究中心常务副主任;青海省先进材料与应用技术重点实验室主任;青海大学非金属材料研究所所长;中国优秀科技工作者。主要从事新能源材料、粉体材料、环境保护材料以及太阳能综合利用等方向的科学研究工作,撰写核心科技论文100余篇,获得授权中国专利30项,授权中国发明专利18项,荣获中国侨界贡献创新成果奖等荣誉。
引用本文:    
魏宁, 铁生年. 功能化碳纳米纤维增强芒硝基相变储能材料的热性能[J]. 材料导报, 2022, 36(6): 21050177-7.
WEI Ning, TIE Shengnian. Functionalized Carbon Nanofibers Enhance the Thermal Properties of Glauber's Salt-based Phase Change Energy Storage Materials. Materials Reports, 2022, 36(6): 21050177-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21050177  或          http://www.mater-rep.com/CN/Y2022/V36/I6/21050177
1 Ali S, Deshmukh S P. Materials Today, Proceedings, 2020, 26,1231.
2 Kenisarin M, Mahkamov K. Solar Energy Materials & Solar Cells, 2016, 145,255.
3 Mohamed S A, Al-Sulaiman F A, Ibrahim N I, et al. Renewable and Sustainable Energy Reviews, 2017, 70,1072.
4 Liu X, Tie J, Tie S N. Journal of Synthetic Crystals, 2015, 44(11),3072 (in Chinese).
柳馨, 铁健, 铁生年. 人工晶体学报, 2015, 44(11),3072.
5 Li X L, Tie S N. Bulletin of the Chinese Ceramic Society, 2018, 37(9),3002(in Chinese).
李秀丽, 铁生年. 硅酸盐通报, 2018, 37(9),3002.
6 Li X L, Tie S N. Materials Reports B:Research Papers, 2018, 32(11),3848 (in Chinese).
李秀丽, 铁生年. 材料导报:研究篇, 2018, 32(11),3848.
7 Li X L, Tie S N, Zhang F J. Bulletin of the Chinese Ceramic Society, 2019, 38(10),3243 (in Chinese).
李秀丽, 铁生年, 张芬娟. 硅酸盐通报, 2019, 38(10),3243.
8 Jiang Z P, Tie S N. Materials Reports B: Research Papers, 2016, 30(12),55 (in Chinese).
蒋自鹏, 铁生年. 材料导报:研究篇, 2016, 30(12),55.
9 Wang Y, Tie S N. Bulletin of the Chinese Ceramic Society, 2020, 39(3),942 (in Chinese).
王洋, 铁生年. 硅酸盐通报, 2020, 39(3),942.
10 Milián Y E, Gutiérrez A, Grágeda M, et al. Renewable & Sustainable Energy Reviews, 2017, 73,983.
11 Karimineghlani P, Palanisamy A, Sukhishvili S A. Acs Applied Materials & Interfaces, 2018, 10,14786.
12 Ye H, Ge X S. Solar Energy Materials and Solar Cells,2000,64(1),37.
13 Sari A, Alkan C, Kolemen U, et al. Journal of Applied Polymer Science, 2006, 101(3),1402.
14 Sari A, Kaygusuz K. Indian Journal of Engineering and Materials Sciences, 2006, 13(3),253.
15 You M, Zhang X X, Li W, et al. Thermochimica Acta, 2008, 472(1),20.
16 Jiang M, Song X, Xu J, et al. Solar Energy Materials & Solar Cells, 2008, 92(12),1657.
17 Wang T, Wu N, Li H, et al. Journal of Applied Polymer Science, 2016, 133(34) ,43836.
18 Karimineghlani P, Emmons E, Green M, et al. Journal of Materials Chemistry A, 2017, 5,12474.
19 Kumar N, Hirschey J, Laclair T J, et al. The Journal of Energy Storage, 2019, 24,100794.
20 Mehrali M, Latibari S T, Mehrali M, et al. Energy Conversion and Ma-nagement,2014,88,206.
21 Elgafy A, Lafdi K. Carbon, 2005, 43(15),3067.
22 Yu J, Meng L, Fan D, et al. Composites Part B: Engineering, 2014, 60,261.
23 Singh A, Sguazzo C, Lima C, et al. Procedia Structural Integrity,2019,17,857.
24 Lakshminarayanan P V, Toghiani H, Pittman C U. Carbon, 2004, 42(12-13),2433.
25 Lu Y, Li W, Sun F, et al. Carbon, 2010, 48(11),3079.
26 Saleh T A. Applied Surface Science, 2011, 257(17),7746.
27 Minale M, Gu Z, Guadie A, et al. Chemosphere, 2021, 272,129902.
28 Tu Z.Preparation of magnetic polyvinyl alcohol/sodium polyacrylate hydrogels and theris electrical response behavior. Master’s Thesis, Hubei University of Technology, China, 2020 (in Chinese).
涂征. 磁性聚乙烯醇/聚丙烯酸钠水凝胶的制备及其电响应行为. 硕士学士论文, 湖北工业大学, 2020.
29 Wu Y, Wang T. Energy Conversion & Management, 2015, 101,164.
30 Zambrzycki M, Loś S, Fraczek-Szczypta A. Ceramics International, 2021, 47(3),4020.
31 Bokobza L, Bruneel J, Couzi M. Carbon, 2015, 1(1),77.
32 Hamilton A, Menzies R I. Journal of Raman Spectroscopy, 2010, 41(9),1014.
33 Jiang Z P, Tie S N. Journal of Synthetic Crystals, 2015, 44(12),3639(in Chinese).
蒋自鹏, 铁生年. 人工晶体学报, 2015, 44(12),3639.
34 Zhang D, Tian S, Xiao D. Solar Energy, 2007, 81(5),653.
[1] 范利丹, 孙亮, 余永强, 张纪云, 郭佳奇. 偏高岭土提高水泥基注浆材料在高地温隧道工程中的适应性[J]. 材料导报, 2022, 36(6): 20100228-8.
[2] 郑灵钰, 章学来, 纪珺. 定型阻燃相变储热材料的研究进展[J]. 材料导报, 2022, 36(5): 20100275-8.
[3] 吴雪莲, 杨建, 屈阳, 王秀敏. 形状记忆聚合物智能材料在生物医学领域的应用[J]. 材料导报, 2021, 35(z2): 492-500.
[4] 贾东, 蔡淑红, 李献强, 郝文静, 刘波涛, 谭凯锋, 王峰. 纳米流体导热介质研究进展[J]. 材料导报, 2021, 35(z2): 540-549.
[5] 范翠红, 秦会斌, 周继军. 酚醛树脂在铝基板上的应用[J]. 材料导报, 2021, 35(z2): 589-592.
[6] 詹宁宁, 张丽锋, 赵新星, 秦立娟, 滕厚开. 超支化聚合物的合成及应用[J]. 材料导报, 2021, 35(z2): 616-626.
[7] 刘刚, 贾莉斯, 陈颖, 汪嘉城, 莫松平. SiO2-H2O纳米悬浮液的导热及其机理分析[J]. 材料导报, 2021, 35(Z1): 116-120.
[8] 吕博, 陈连喜. 磷酸基功能化二氧化硅材料的制备、性能和应用[J]. 材料导报, 2021, 35(Z1): 143-150.
[9] 吴丽梅, 刘庆欣, 王晓龙, 唐宁, 高丽丽, 胡玲. 相变储能材料研究进展[J]. 材料导报, 2021, 35(Z1): 501-506.
[10] 金琳, 杨永珍, 樊建锋, 许并社. 碳微球表面功能化对镁基复合材料的增强作用[J]. 材料导报, 2021, 35(8): 8093-8098.
[11] 朱邱豪, 王金金, 董建峰. 高效光学可调谐介质超表面研究进展[J]. 材料导报, 2021, 35(7): 7063-7070.
[12] 刘益良, 苏幼坡, 殷尧, 赵江山, 王硕, 莫宗云. 膨润土改性胶凝材料的研究进展[J]. 材料导报, 2021, 35(5): 5040-5052.
[13] 夏容绮, 刘毅, 郭洪武. 透光性木材功能化改性研究进展[J]. 材料导报, 2021, 35(5): 5188-5194.
[14] 吴韶飞, 闫霆, 蒯子函, 潘卫国. 高各向异性十六酸/膨胀石墨定形相变储热材料的性能[J]. 材料导报, 2021, 35(4): 4186-4193.
[15] 陈玉星, 王天浩, 黎晓杰, 付海, 何力, 龚维. LDH-热膨胀微胶囊的合成及发泡EVA复合材料的综合性能[J]. 材料导报, 2021, 35(4): 4194-4199.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed