Please wait a minute...
材料导报  2025, Vol. 39 Issue (11): 24060195-8    https://doi.org/10.11896/cldb.24060195
  金属与金属基复合材料 |
Sc含量及热处理对Al-Si-Cu-Mg合金组织及热学性能的影响
徐升亮1, 廖凯1, 杨湘杰1,*, 郭洪民2
1 南昌大学先进制造学院,南昌 330031
2 南昌大学物理与材料学院,南昌 330031
Effects of Sc Content and Heat Treatment on Microstructure and Thermal Properties of Al-Si-Cu-Mg Alloy
XU Shengliang1, LIAO Kai1, YANG Xiangjie1,*, GUO Hongmin2
1 School of Advanced Manufacturing, Nanchang University, Nanchang 330031, China
2 School of Physics and Materials Science, Nanchang University, Nanchang 330031, China
下载:  全 文 ( PDF ) ( 22954KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着通信技术和无人驾驶技术的快速进步,电子设备的集成度持续提升,对电子封装材料的性能需求也随之增加。本工作研究了稀土元素Sc的含量以及热处理对Al-Si-Cu-Mg合金组织和热学性能的影响,旨在确定最佳的Sc添加量和热处理工艺,以制备出具有低热膨胀系数和高导热性能的铝硅合金。研究结果表明,适量Sc的添加能够有效细化Al-20Si-2Cu-0.3Mg合金中的初生硅相和共晶硅相,从而降低Al-20Si-2Cu-0.3Mg-xSc合金的热膨胀系数。通过热处理,共晶硅的形貌得到了进一步优化,使得合金在保持低热膨胀系数的同时还能具备较高的导热系数和电导率。在30~300 ℃下,经过热处理的Al-20Si-2Cu-0.3Mg-0.2Sc合金的平均热膨胀系数为17.58×10-6 K-1,导热系数达到131.05 W/(m·K),电导率为22.07% IACS。本研究揭示了Sc含量和热处理对Al-Si-Cu-Mg合金组织的影响机制,并探讨了微观组织对热学性能的影响规律,可为未来低膨胀、高导热铝硅合金的设计提供了参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
徐升亮
廖凯
杨湘杰
郭洪民
关键词:  Sc元素  Al-Si-Cu-Mg合金  热膨胀性能  导热性能  热处理    
Abstract: With the advancement of communication, unmanned driving, and other technological fields, the integration of electronic devices has been continuously enhanced, resulting in elevated demands for the performance of electronic packaging materials. In this work, the impact of Sc content and heat treatment on the microstructure and thermal properties of Al-Si-Cu-Mg alloy was thoroughly investigated. The primary objective was to identify the optimal Sc addition and heat treatment procedure for producing the Al-Si alloy with reduced expansion and increased thermal conductivity. The findings reveal that the inclusion of Sc effectively refines the primary silicon phase and eutectic silicon phase in Al-20Si-2Cu-0.3Mg alloy, consequently leading to a gradual decline in the thermal expansion coefficient of the alloy. Subsequent heat treatment further optimizes the eutectic silicon morphology, resulting in an alloy with diminished thermal expansion coefficient, heightened thermal conductivity, and electrical conductivity. Within the temperature range of 30 to 300 ℃, the average thermal expansion coefficient, thermal conductivity, and conductivity of Al-20Si-2Cu-0.3Mg-0.2Sc alloy are 17.58×10-6 K-1, 131.05 W/(m·K), and 22.07% IACS, respectively. This study extensively discusses the impact of Sc content and heat treatment on the microstructure of Al-Si-Cu-Mg alloy, contributing to a comprehensive understanding of the relationship between microstructure and thermal properties. The insights gained from this work may offer valuable guidance for the development of Al-Si alloys characterized by low expansion and superior thermal conductivity.
Key words:  Sc element    Al-Si-Cu-Mg alloy    thermal expansion performance    thermal conductivity performance    heat treatment
发布日期:  2025-05-29
ZTFLH:  TG146.21  
基金资助: 江西省重大科技研发专项(20223AAE02009);轻合金材料江西省重点实验室基金(2024SSY05031)
通讯作者:  *杨湘杰,研究方向为非晶合金及半固态精密材料成型。yangxj@ncu.edu.cn   
作者简介:  徐升亮,南昌大学先进制造学院硕士研究生,主要研究领域为金属材料成形加工。
引用本文:    
徐升亮, 廖凯, 杨湘杰, 郭洪民. Sc含量及热处理对Al-Si-Cu-Mg合金组织及热学性能的影响[J]. 材料导报, 2025, 39(11): 24060195-8.
XU Shengliang, LIAO Kai, YANG Xiangjie, GUO Hongmin. Effects of Sc Content and Heat Treatment on Microstructure and Thermal Properties of Al-Si-Cu-Mg Alloy. Materials Reports, 2025, 39(11): 24060195-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24060195  或          https://www.mater-rep.com/CN/Y2025/V39/I11/24060195
1 Wan Y J, Li G, Yao Y M, et al. Composites Communications, 2020, 19, 154.
2 Akbari S, Kostov K, Brinkfeldt K, et al. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2022, 12(11), 1857.
3 Zeng J, Peng C Q, Wang R C, et al. The Chinese Journal of Nonferrous Metals, 2015, 25(12), 3255 (in Chinese).
曾婧, 彭超群, 王日初, 等. 中国有色金属学报, 2015, 25(12), 3255.
4 Gai X C. Metal Working (Metal Cutting), 2023(7), 16(in Chinese).
盖晓晨. 金属加工(冷加工), 2023(7), 16.
5 Wang T J, Zhou X N, Liu G H. Powder Metallurgy Technology, 2005(2), 145 (in Chinese).
王铁军 周熊宁, 刘国辉. 粉末冶金技术, 2005(2), 145.
6 Zhao J W. Interface structure regulation and properties research of diamond/copper composite. Master’s Thesis, Hunan University, China, 2023 (in Chinese).
赵佳韡. 金刚石/铜复合材料界面结构调控与性能研究. 硕士学位论文, 湖南大学, 2023.
7 Zhang A L, Li Y X. Materials, 2023, 16(8), 2972.
8 Zhang Y J, Wang Z F, Lyu W J, et al. Materials Reports , 1997(3), 52 (in Chinese).
张迎九, 王志法, 吕维洁, 等. 材料导报, 1997(3), 52.
9 Choi S W, Kim Y M, Lee K M, et al. Journal of Alloys and Compounds, 2014, 617, 654
10 Choi S W, Kim Y M, Kim Y C. Journal of Alloys and Compounds, 2019, 775, 132.
11 Cao F, Jia Y, Prashanth K G, et al. Materials & Design, 2015, 74, 150.
12 Teng F, Yu K, Luo J, et al. Transactions of Nonferrous Metals Society of China, 2016, 26(10), 2647.
13 Jia Y, Cao F, Ma P, et al. Journal of Materials Research, 2016, 31(19), 2948.
14 Yu J H, Wang C B, Shen Q, et al. Materials and Design, 2012, 41, 198.
15 Wang F, Xiong B, Zhang Y, et al. Materials Characterization, 2008, 59(10), 1455.
16 Chao L I, Chao Q P, Kun Y U, et al. The Chinese Journal of Nonferrous Metals, 2009, 19(2), 303.
17 Wu X Q, Yan H, Chen F H, et al. Journal of Materials Engineering and Performance, 2020, 29(3), 1810.
18 Li Q, Li J, Li B, et al. Journal of Materials Engineering and Perfor-mance, 2018, 27(7), 3498.
19 Chen W, Liu Y, Peng H, et al. Materials Today Communications, 2023, 34, 105310.
20 Zhang H, Chen B, Hao J, et al. Materials, 2023, 16(3), 902.
21 Shang X, Li Y, Zhou Z, et al. Journal of Materials Engineering and Performance, DOI:10. 1007/s11665-024-09511-6.
22 Zhang J Y, Gao Y H, Yang C, et al. Rare Metals, 2020, 39(6), 636.
23 Peng F. Study on the influence of extrusion forming on the thermal conductivity of 6063 aluminum alloy. Master’s Thesis, Guangxi University, China, 2011 (in Chinese).
彭斐. 挤压变形对6063铝全金导热性能影响的研究. 硕士学位论文, 广西大学, 2011.
24 Osamura K, Otsuka N, Murakami Y. Philosophical Magazine B, 1982, 45(6), 583.
25 Zhao A B. Hot Working Technology, 2010, 39 (4), 139 (in Chinese).
赵爱彬. 热加工工艺, 2010, 39(4), 139
26 Cingi C, Rauta V, Suikkanen E, et al. Advanced Materials Research, 2012, 538, 2047.
27 Lumley R N, Polmear I J, Groot H, et al. Scripta Materialia, 2008, 58(11), 1006.
28 Lados D A, Apelian D, Wang L. Metallurgical and Materials Transactions B, 2011, 42(1), 171.
29 Chen X C, Weng W P, Changhai B W, et al. Special Casting & Nonferrous Alloys, 2020, 40(7), 727(in Chinese).
陈小村, 翁文凭, 长海博文, 等. 特种铸造及有色金, 2020, 40(7), 727.
30 Ding C, Hao H, Ma R, et al. Journal of Materials Research and Technology, 2023, 27, 4940.
31 Xue B. Effect of microalloying (Sc, Ti, V, Zr) oncreep properties of piston aluminum alloy. Master’s Thesis, Xi’an Technological University, China, 2020(in Chinese).
薛冰. 微合金化(Sc、Ti、V、Zr)对活塞铝合金蠕变性能的影响. 硕士学位论文, 西安工业大学, 2020.
32 Lei X, Guo Y C, Wang J L. Hot Working Technology, 2023, 52 ( 22 ), 89 (in Chinese).
雷欣, 郭永春, 王建利, 等. 热加工工艺, 2023, 52(22), 89.
33 Liu T, You Z Y, Zhao X S, et al. Foundry, 2022, 71 (10), 1235 (in Chinese).
刘涛, 游志勇, 赵薛生, 等. 铸造, 2022, 71(10), 1235.
34 Royset J, Ryum N. International Materials Reviews, 2005, 50(1), 19.
35 Su C, Li D, Luo A A, et al. Journal of Alloys and Compounds, 2018, 747, 431.
36 Liu J, Wen C, Gan J Q, et al. Materials Reports, 2021, 35 (24), 24101 (in Chinese).
刘静, 温澄, 甘俊旗, 等. 材料导报, 2021, 35(24), 24101.
37 Su C Y. Thermal mechanism of magnesium alloys based on solute atom and second phase. Ph. D. Thesis, Shanghai Jiao Tong University, China, 2019 (in Chinese).
苏创业. 基于固溶原子和第二相的镁合金导热机制研究. 博士学位论文, 上海交通大学, 2019.
38 Hao J, Chen B, Xia P, et al. International Journal of Metalcasting, 2024, 18(3), 2313.
[1] 卞宏友, 柳金生, 刘伟军, 张广泰, 姚佳彬, 邢飞. 激光沉积修复GH738/K417G合金时效热处理组织性能分析[J]. 材料导报, 2025, 39(3): 23110265-6.
[2] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[3] 赵卫平, 刘英健, 生兆川, 程赛, 徐旸. 三维细观早龄期混凝土导热性能数值模拟[J]. 材料导报, 2025, 39(10): 24040083-10.
[4] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[5] 马东帅, 闫二虎, 白金旺, 王豪, 张硕, 王艺豪, 李唐卫, 郭智洁, 周子锐, 邹勇进, 孙立贤. V-Ti-Fe三元合金显微组织、氢传输行为及耐蚀性能研究[J]. 材料导报, 2024, 38(8): 22110007-7.
[6] 刘斌, 索超, 李忠华, 蒯泽宙, 陈彦磊, 唐秀. 选区激光熔化成形铜合金研究进展[J]. 材料导报, 2024, 38(7): 22080129-11.
[7] 张明玉, 运新兵, 伏洪旺. BASCA热处理对TC10钛合金组织与断裂韧性的影响[J]. 材料导报, 2024, 38(7): 22080020-6.
[8] 张勇, 王斌斌, 刘琛, 李斌强, 赵俊波, 李志文, 李哲, 赵春志, 王亮, 苏彦庆. 增材制造金属材料在海洋环境下的耐蚀性能——综述[J]. 材料导报, 2024, 38(23): 23080239-11.
[9] 周玉浩, 连鸣, 王颜凯, 苏明周. 7×19构型NiTi形状记忆合金绞线超弹性试验研究[J]. 材料导报, 2024, 38(21): 23070029-10.
[10] 秦盛伟, 邸黎寅, 王连翔, 张承昊. 渗碳工艺对18CrNiMo7-6合金钢缺口件疲劳性能的影响[J]. 材料导报, 2024, 38(2): 22100180-7.
[11] 王旭洁, 雒翠梅, 母军, 漆楚生. 热处理对木材多尺度结构及力学性能影响的研究现状[J]. 材料导报, 2024, 38(18): 23020251-8.
[12] 张先满, 李星涛, 季坤鹏, 陈再雨, 罗洪峰. 原位生成周期性层片结构镀层及其在NaCl溶液中的腐蚀形貌[J]. 材料导报, 2024, 38(12): 22110026-7.
[13] 王虎, 武少杰, 董翼纶, 程方杰. 热输入对埋弧增材厚壁构件微观组织与冲击韧性的影响[J]. 材料导报, 2024, 38(11): 22120217-5.
[14] 洪森, 刘九军, 汪云程, 吕亮, 廖桓毅, 罗屹峰, 罗张吉, 蒋耀年, 毛卫国. 超长时间热处理后镍-石墨封严涂层力学性能演变特性分析[J]. 材料导报, 2024, 38(11): 22100277-4.
[15] 程瑄, 桂晓露, 高古辉. 先进高强钢中的残余奥氏体:综述[J]. 材料导报, 2023, 37(7): 21070186-12.
[1] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[2] LIU Shuaiyang, WANG Aiqin, LYU Shijing, TIAN Hanwei. Interfacial Properties and Further Processing of Cu/Al Laminated Composite: a Review[J]. Materials Reports, 2018, 32(5): 828 -835 .
[3] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[4] CAO Xiuzhong, ZHAO Bing, HAN Xiuquan, HOU Hongliang, QU Haitao. Research on Deformation Mechanism of SiC Fiber Reinforced Titanium Matrix Composites Subjected to High Temperature Axial Tension[J]. Materials Reports, 2017, 31(8): 88 -93 .
[5] ZHANG Jiaqing, ZHANG Bosi, WANG Liufang, FAN Minghao, XIE Hui, LI Wei. The State of the Art of Combustion Behavior of Live Wires and Cables[J]. Materials Reports, 2017, 31(15): 1 -9 .
[6] LI Xueyun, WANG Hezhong. Optimization and Characterization of TEMPO-Mediated Oxidization of Nanochitin Whiskers[J]. Materials Reports, 2018, 32(10): 1597 -1601 .
[7] LI Beigang, WANG Min. High Efficient Adsorption of Dyes by Fe/CTS/AFA Composite[J]. Materials Reports, 2018, 32(10): 1606 -1611 .
[8] ZHAO Qingchen, WANG Jinlong, ZHANG Yuanliang, SHEN Yihong, LIU Shujie. Fatigue Behavior and Fatigue Life for FV520B-I at Different Loading Frequencies[J]. Materials Reports, 2018, 32(16): 2837 -2841 .
[9] ZHOU Chao, WANG Hui, OUYANG Liuzhang, ZHU Min. The State of the Art of Hydrogen Storage Materials for High-pressure Hybrid Hydrogen Vessel[J]. Materials Reports, 2019, 33(1): 117 -126 .
[10] WANG Huifen, LIU Gang, CAO Kangli, YANG Biqi, XU Jun, LAN Shaofei, ZHANG Lixin. Development Status of Carbon Nanotube Materials and Their Application Prospects in Spacecraft[J]. Materials Reports, 2019, 33(z1): 78 -83 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed