Effects of Sc Content and Heat Treatment on Microstructure and Thermal Properties of Al-Si-Cu-Mg Alloy
XU Shengliang1, LIAO Kai1, YANG Xiangjie1,*, GUO Hongmin2
1 School of Advanced Manufacturing, Nanchang University, Nanchang 330031, China 2 School of Physics and Materials Science, Nanchang University, Nanchang 330031, China
Abstract: With the advancement of communication, unmanned driving, and other technological fields, the integration of electronic devices has been continuously enhanced, resulting in elevated demands for the performance of electronic packaging materials. In this work, the impact of Sc content and heat treatment on the microstructure and thermal properties of Al-Si-Cu-Mg alloy was thoroughly investigated. The primary objective was to identify the optimal Sc addition and heat treatment procedure for producing the Al-Si alloy with reduced expansion and increased thermal conductivity. The findings reveal that the inclusion of Sc effectively refines the primary silicon phase and eutectic silicon phase in Al-20Si-2Cu-0.3Mg alloy, consequently leading to a gradual decline in the thermal expansion coefficient of the alloy. Subsequent heat treatment further optimizes the eutectic silicon morphology, resulting in an alloy with diminished thermal expansion coefficient, heightened thermal conductivity, and electrical conductivity. Within the temperature range of 30 to 300 ℃, the average thermal expansion coefficient, thermal conductivity, and conductivity of Al-20Si-2Cu-0.3Mg-0.2Sc alloy are 17.58×10-6 K-1, 131.05 W/(m·K), and 22.07% IACS, respectively. This study extensively discusses the impact of Sc content and heat treatment on the microstructure of Al-Si-Cu-Mg alloy, contributing to a comprehensive understanding of the relationship between microstructure and thermal properties. The insights gained from this work may offer valuable guidance for the development of Al-Si alloys characterized by low expansion and superior thermal conductivity.
1 Wan Y J, Li G, Yao Y M, et al. Composites Communications, 2020, 19, 154. 2 Akbari S, Kostov K, Brinkfeldt K, et al. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2022, 12(11), 1857. 3 Zeng J, Peng C Q, Wang R C, et al. The Chinese Journal of Nonferrous Metals, 2015, 25(12), 3255 (in Chinese). 曾婧, 彭超群, 王日初, 等. 中国有色金属学报, 2015, 25(12), 3255. 4 Gai X C. Metal Working (Metal Cutting), 2023(7), 16(in Chinese). 盖晓晨. 金属加工(冷加工), 2023(7), 16. 5 Wang T J, Zhou X N, Liu G H. Powder Metallurgy Technology, 2005(2), 145 (in Chinese). 王铁军 周熊宁, 刘国辉. 粉末冶金技术, 2005(2), 145. 6 Zhao J W. Interface structure regulation and properties research of diamond/copper composite. Master’s Thesis, Hunan University, China, 2023 (in Chinese). 赵佳韡. 金刚石/铜复合材料界面结构调控与性能研究. 硕士学位论文, 湖南大学, 2023. 7 Zhang A L, Li Y X. Materials, 2023, 16(8), 2972. 8 Zhang Y J, Wang Z F, Lyu W J, et al. Materials Reports , 1997(3), 52 (in Chinese). 张迎九, 王志法, 吕维洁, 等. 材料导报, 1997(3), 52. 9 Choi S W, Kim Y M, Lee K M, et al. Journal of Alloys and Compounds, 2014, 617, 654 10 Choi S W, Kim Y M, Kim Y C. Journal of Alloys and Compounds, 2019, 775, 132. 11 Cao F, Jia Y, Prashanth K G, et al. Materials & Design, 2015, 74, 150. 12 Teng F, Yu K, Luo J, et al. Transactions of Nonferrous Metals Society of China, 2016, 26(10), 2647. 13 Jia Y, Cao F, Ma P, et al. Journal of Materials Research, 2016, 31(19), 2948. 14 Yu J H, Wang C B, Shen Q, et al. Materials and Design, 2012, 41, 198. 15 Wang F, Xiong B, Zhang Y, et al. Materials Characterization, 2008, 59(10), 1455. 16 Chao L I, Chao Q P, Kun Y U, et al. The Chinese Journal of Nonferrous Metals, 2009, 19(2), 303. 17 Wu X Q, Yan H, Chen F H, et al. Journal of Materials Engineering and Performance, 2020, 29(3), 1810. 18 Li Q, Li J, Li B, et al. Journal of Materials Engineering and Perfor-mance, 2018, 27(7), 3498. 19 Chen W, Liu Y, Peng H, et al. Materials Today Communications, 2023, 34, 105310. 20 Zhang H, Chen B, Hao J, et al. Materials, 2023, 16(3), 902. 21 Shang X, Li Y, Zhou Z, et al. Journal of Materials Engineering and Performance, DOI:10. 1007/s11665-024-09511-6. 22 Zhang J Y, Gao Y H, Yang C, et al. Rare Metals, 2020, 39(6), 636. 23 Peng F. Study on the influence of extrusion forming on the thermal conductivity of 6063 aluminum alloy. Master’s Thesis, Guangxi University, China, 2011 (in Chinese). 彭斐. 挤压变形对6063铝全金导热性能影响的研究. 硕士学位论文, 广西大学, 2011. 24 Osamura K, Otsuka N, Murakami Y. Philosophical Magazine B, 1982, 45(6), 583. 25 Zhao A B. Hot Working Technology, 2010, 39 (4), 139 (in Chinese). 赵爱彬. 热加工工艺, 2010, 39(4), 139 26 Cingi C, Rauta V, Suikkanen E, et al. Advanced Materials Research, 2012, 538, 2047. 27 Lumley R N, Polmear I J, Groot H, et al. Scripta Materialia, 2008, 58(11), 1006. 28 Lados D A, Apelian D, Wang L. Metallurgical and Materials Transactions B, 2011, 42(1), 171. 29 Chen X C, Weng W P, Changhai B W, et al. Special Casting & Nonferrous Alloys, 2020, 40(7), 727(in Chinese). 陈小村, 翁文凭, 长海博文, 等. 特种铸造及有色金, 2020, 40(7), 727. 30 Ding C, Hao H, Ma R, et al. Journal of Materials Research and Technology, 2023, 27, 4940. 31 Xue B. Effect of microalloying (Sc, Ti, V, Zr) oncreep properties of piston aluminum alloy. Master’s Thesis, Xi’an Technological University, China, 2020(in Chinese). 薛冰. 微合金化(Sc、Ti、V、Zr)对活塞铝合金蠕变性能的影响. 硕士学位论文, 西安工业大学, 2020. 32 Lei X, Guo Y C, Wang J L. Hot Working Technology, 2023, 52 ( 22 ), 89 (in Chinese). 雷欣, 郭永春, 王建利, 等. 热加工工艺, 2023, 52(22), 89. 33 Liu T, You Z Y, Zhao X S, et al. Foundry, 2022, 71 (10), 1235 (in Chinese). 刘涛, 游志勇, 赵薛生, 等. 铸造, 2022, 71(10), 1235. 34 Royset J, Ryum N. International Materials Reviews, 2005, 50(1), 19. 35 Su C, Li D, Luo A A, et al. Journal of Alloys and Compounds, 2018, 747, 431. 36 Liu J, Wen C, Gan J Q, et al. Materials Reports, 2021, 35 (24), 24101 (in Chinese). 刘静, 温澄, 甘俊旗, 等. 材料导报, 2021, 35(24), 24101. 37 Su C Y. Thermal mechanism of magnesium alloys based on solute atom and second phase. Ph. D. Thesis, Shanghai Jiao Tong University, China, 2019 (in Chinese). 苏创业. 基于固溶原子和第二相的镁合金导热机制研究. 博士学位论文, 上海交通大学, 2019. 38 Hao J, Chen B, Xia P, et al. International Journal of Metalcasting, 2024, 18(3), 2313.