Please wait a minute...
材料导报  2025, Vol. 39 Issue (11): 24050239-6    https://doi.org/10.11896/cldb.24050239
  金属与金属基复合材料 |
Q&P工艺中淬火冷速和分配温度对中碳钢显微组织和力学性能的影响
黄玮1,2, 欧梅桂1,2,*, 梁益龙1,2, 马永涛3
1 贵州大学材料与冶金学院,贵阳 550025
2 贵州大学贵州省材料结构与强度重点实验室,贵阳 550025
3 中车贵阳车辆有限公司,贵阳 550025
Effect of Cooling Rate and Partitioning Temperature on Microstructure and Mechanical Properties of Medium-carbon Steel During Quenching and Partitioning
HUANG Wei1,2, OU Meigui1,2,*, LIANG Yilong1,2, MA Yongtao3
1 College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
2 Guizhou Key Laboratory of Material Structure and Strength, Guizhou University, Guiyang 550025, China
3 CRRC Guiyang Vehicle Co., Ltd., Guiyang 550025, China
下载:  全 文 ( PDF ) ( 38982KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 淬火-分配(Quenching and partitioning,Q&P)钢是淬火和分配复合作用的结果,淬火得到高强度马氏体基体,分配稳定残留奥氏体提高塑性。本工作通过采用具有不同冷速的淬火介质——油、13%PAG和HX-2000淬火,研究了Q&P工艺中淬火冷速对中碳钢组织及性能的影响,并探讨了不同分配温度对碳分配过程的影响。结果表明,淬火快速冷却能得到高碳马氏体组织,有利于促进分配过程中马氏体向残留奥氏体的碳扩散,提高碳分配程度,并且随着淬火冷速的增加,马氏体有效晶粒尺寸减小、马氏体组织细化、位错密度增加,从而使中碳钢得到优异的强度和塑性。高温分配能减弱马氏体和残留奥氏体间的碳不均匀性,促进碳从马氏体向残留奥氏体中扩散,起到稳定残留奥氏体的作用,提高中碳钢的断后伸长率。当采用13%PAG淬火、320 ℃分配时,中碳钢伸长率为10.34%~10.37%,强塑积能达到18.94~19.21 GPa%,表现出更高的强塑性匹配。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄玮
欧梅桂
梁益龙
马永涛
关键词:  淬火冷速  分配温度  淬火-分配工艺  强度  塑性    
Abstract: Q&P process is under control of both quenching and partitioning. Quenching is help to obtain high-strength martensitic matrix, while partitioning is help to stabilize residual austenite and improve the Q&P steel’s plasticity. Adopting quenchants with different cooling rates such as oil, 13% PAG, and HX-2000, the effect of quenching rates on partitioning temperature-dependent microstructure and mechanical properties of medium-carbon steel was discussed by quenching tests. Meanwhile, the effect of partitioning temperature on carbon partitioning was also stu-died. The findings show that the carbon non-uniformity between martensite and residual austenite subsides during high temperature partitioning, which could promote the diffusion of carbon from martensite to residual austenite, stabilize residual austenite and improve the elongation of medium carbon steel. Besides, rapid quenching can obtain high carbon martensite, which is conducive to promoting the carbon diffusion of martensite to residual austenite and improving the level of carbon partitioning during partitioning process. With the increase of quenching rate, the effective grain size of martensite decreases, the martensite structure is refined and the dislocation density increases, resulting in excellent strength and plasticity of medium carbon steel. Under quenching with 13% PAG and a partitioning temperature of 320 ℃, the experimental steel obtains a good match of strength and plasticity with a elongation of about 10.34%—10.37% and the strength plastic product can of 18.94—19.21 GPa%.
Key words:  cooling rate    partitioning temperature    quenching and partitioning (Q&P)    strength    plasticity
发布日期:  2025-05-29
ZTFLH:  TG142.1  
基金资助: 贵州省科技厅科技计划项目(黔科合成果[2022]一般031;黔科合支撑项目[2023]一般267);贵州省科技厅百层次人才计划(GCC[2023]051)
通讯作者:  *欧梅桂,博士,贵州大学材料与冶金学院教授、博士研究生导师。目前主要从事金属结构材料与功能材料等方面的研究。rose8239@163.com   
作者简介:  黄玮,贵州大学材料与冶金学院硕士研究生,在欧梅桂教授的指导下进行研究。主要研究领域为金属材料结构与性能。
引用本文:    
黄玮, 欧梅桂, 梁益龙, 马永涛. Q&P工艺中淬火冷速和分配温度对中碳钢显微组织和力学性能的影响[J]. 材料导报, 2025, 39(11): 24050239-6.
HUANG Wei, OU Meigui, LIANG Yilong, MA Yongtao. Effect of Cooling Rate and Partitioning Temperature on Microstructure and Mechanical Properties of Medium-carbon Steel During Quenching and Partitioning. Materials Reports, 2025, 39(11): 24050239-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24050239  或          https://www.mater-rep.com/CN/Y2025/V39/I11/24050239
1 Xu Z Y. Heat Treatment, 2008(2), 1 (in Chinese).
徐祖耀. 热处理, 2008(2), 1.
2 Gao P F. Study on microstructure control and deformation mechanism of 1 300 MPa grade quenching and partitioning steel. Ph. D. Thesis, University of Science and Technology Beijing, China, 2021 (in Chinese).
高鹏飞. 1 300 MPa级淬火配分钢的组织调控及形变机制研究. 博士学位论文, 北京科技大学, 2021.
3 Seo E J, Cho L, Kim J K, et al. Materials Science and Engineering:A, 2019, 740.
4 Ou M G, Yang C L, Zhu J, et al. Journal of Alloys and Compounds, 2016, 697, 43.
5 Speer J, Matlock D K, De Cooman B C, et al. Acta Materialia, 2003, 51(9), 2611.
6 Arlazarov A, Ollat M, Masse J P, et al. Materials Science and Enginee-ring:A, 2016, 661, 79.
7 Pierce D T, Coughlin D R, Williamson D L, et al. Scripta Materialia, 2016, 121, 5.
8 Xu J. Effect of different quenching rates on microstructure and mechanical properties of 60Si2CrVAT spring steel. Master’s Thesis, Guizhou University, China, 2015 (in Chinese).
徐军. 不同淬火速度对60Si2CrVAT弹簧钢微观组织与力学性能的影响. 硕士学位论文, 贵州大学, 2015.
9 Bansal G K, Rajinikanth V, Ghosh C, et al. Materials Science and Engineering:A, 2020, 788, 193614.
10 Goulas C, Komar A, Mecozzi M G, et al. Materials Characterization, 2019, 152, 67.
11 Tan X D, Ponge D, Lu W, et al. Acta Materialia, 2019, 165, 561.
12 Huang Q L, Ullrich C, Mola J, et al. Materials Science and Engineering:A, 2022, 854, 143787.
13 Li Y J, Kang J, Zhang W N, et al. Materials Science and Engineering:A, 2018, 710, 181.
14 Kumar S, Singh S B. Materials Characterization, 2023, 196, 112561.
15 Seo E J, Cho L, Estrin Y, et al. Acta Materialia, 2016, 113, 124.
16 Luo H W, Wang X H, Liu Z B, et al. Journal of Materials Science and Technology, 2020, 51, 130.
17 Wang M M, Hell J C, Tasan C C. Scripta Materialia, 2017, 138, 1.
18 Liu R X, Chen D S, Ou M G, et al. Journal of Materials Research and Technology, 2023, 24, 407.
19 Hwang K C, Huang Y Y. Key Enineering Materials, 2000, 183-187, 9.
20 Liu G, Li T, Yang Z G, et al. Acta Materialia, 2020, 201, 266.
21 Liu Z X. Study on quenching cooling property and thermochemical stability of PAG quenching medium. Master’s Thesis, Chongqing University of Technology, China, 2019 (in Chinese).
刘志学. PAG淬火介质淬火冷却性及热化学稳定性研究. 硕士学位论文, 重庆理工大学, 2019.
[1] 程焱, 张弦, 苏志诚, 刘静, 吴开明. 具有TRIP效应的先进高强度钢力学性能及腐蚀行为的研究进展[J]. 材料导报, 2025, 39(8): 24020115-8.
[2] 张鹏, 李兵, 徐飞越, 汪锐杰, 王敏. 预处理条件对QP980钢组织及塑性失稳行为的影响[J]. 材料导报, 2025, 39(8): 24020130-6.
[3] 王艳, 常天风, 杨子凡, 李伊岚. 超高性能混凝土-普通混凝土界面粘结性能研究[J]. 材料导报, 2025, 39(7): 24020129-6.
[4] 董硕, 郑立森, 史奉伟, 王来, 刘哲. 钢纤维地聚物再生混凝土力学性能及强度指标换算[J]. 材料导报, 2025, 39(7): 24100219-8.
[5] 段明翰, 覃源, 李阳, 耿凯强. 寒冷地区腈纶纤维混凝土力学性能及多层感知器神经网络预测[J]. 材料导报, 2025, 39(6): 23110143-9.
[6] 梁志超, 任文渊, 李双村, 张爱军, 王毓国. 冻融和易溶盐对石灰固化伊犁黄土强度及水稳性的影响[J]. 材料导报, 2025, 39(6): 23120250-8.
[7] 李欢, 张健, 伍世英, 刘千喜. 焊头形状对Cu/Al大功率超声焊接温度场及塑性变形的影响[J]. 材料导报, 2025, 39(6): 24010115-6.
[8] 钟新宇, 赖俊英, 阮少钦, 钱晓倩, 钱匡亮. 复合早强剂对掺石灰石粉砂浆强度和水化作用的影响[J]. 材料导报, 2025, 39(5): 24010244-8.
[9] 李自强, 崔素萍, 马忠诚, 王亚丽, 王晶, 刘云, 乔志杨. 机器学习算法用于水泥强度预测的研究进展[J]. 材料导报, 2025, 39(5): 23120133-12.
[10] 王伟, 庞少雄, 丁士杰, 杨昊天, 于呈呈. 向心关节轴承包围式单边挤压成形工艺数值模拟与实验验证[J]. 材料导报, 2025, 39(4): 23100250-7.
[11] 周志刚, 何斯华, 黎凯, 黄红明, 章泽鹏. 酸雨-干湿循环-荷载综合作用下水泥稳定碎石强度特性分析[J]. 材料导报, 2025, 39(3): 23070146-9.
[12] 张凌凯, 丁旭升, 樊培培. 新疆北部重塑性黄土的力学特性规律及微观机制试验研究[J]. 材料导报, 2025, 39(3): 23090060-10.
[13] 纪泳丞, 王大洋, 贾艳敏. PVA纤维增强砖骨料再生混凝土数值模拟及尺寸效应研究[J]. 材料导报, 2025, 39(3): 23100214-11.
[14] 敬彬, 胡文军, 陶俊林. Taylor撞击实验及其应用研究进展[J]. 材料导报, 2025, 39(2): 23100210-10.
[15] 聂光临, 刘磊仁, 刘一军, 左飞, 汪庆刚, 吴洋, 黄玲艳, 包亦望. 利用t-ZrO2分散特性的优化制备高强韧高导热ZTA陶瓷[J]. 材料导报, 2025, 39(11): 24020100-9.
[1] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[2] WU Wei, CHEN Shiying, ZONG Mengjingzi. Dielectric Properties and Thermal Stability of Nano-Al2O3/Polyether Sulfone-epoxy Resin Composites[J]. Materials Reports, 2017, 31(20): 21 -24 .
[3] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[4] MO Peicheng, WU Yi, YU Wenlin, WANG Jilin, ZOU Zhengguang, ZHONG Shenglin, WANG Peng. In Situ Synthesis of PcBN Composites by cBN-Ti-Al-Si and Their Mechanical Property[J]. Materials Reports, 2018, 32(14): 2355 -2359 .
[5] HU Yaoqiang, CHEN Fajin, LIU Haining, ZHANG Huifang, WU Zhijian, YE Xiushen. Preparation of Poly(N-isopropylacrylamide) Hydrogel and Its Thermally Induced Aggregation Behavior[J]. Materials Reports, 2018, 32(14): 2491 -2496 .
[6] SONG Gang, CHI Jiayu, YU Jingwei, LIU Liming. Corrosion Behavior of Mg-steel Laser-TIG Hybrid Welding Joint[J]. Materials Reports, 2018, 32(16): 2773 -2777 .
[7] HUANG Hui, HAN Jianfeng, WANG Yishun, XIA Yang, ZHANG Jun, GAN Yongping, LIANG Chu, ZHANG Wenkui. Supercritical CO2 Assisting Cladding of LiMnPO4 on the Surface of Li[Li0.2-Mn0.54Co0.13Ni0.13]O2 and Its Electrochemical Properties[J]. Materials Reports, 2018, 32(23): 4072 -4078 .
[8] WANG Zhonghui, XIN Yong. Molecular Dynamics Simulation on the Relationship of Oxygen Diffusion and Polymer Chains Activity[J]. Materials Reports, 2019, 33(8): 1293 -1297 .
[9] CHANG Jingjing. Spin Coating Epitaxial Films[J]. Materials Reports, 2019, 33(12): 1919 -1920 .
[10] ZHUANG Xiaodong, LI Rongxing, YU Xiaohua, XIE Gang, HE Xiaocai, XU Qingxin. Preparation of Lithium Titanate Electrode Materials by Solid Phase Method[J]. Materials Reports, 2019, 33(16): 2654 -2659 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed