Please wait a minute...
材料导报  2025, Vol. 39 Issue (23): 24110228-13    https://doi.org/10.11896/cldb.24110228
  无机非金属及其复合材料 |
质子交换膜水电解制氢反应:铱基催化剂设计研究进展
李赢华1,2, 皮晓琳3, 李鸿鹏3, 田乙然3, 王钰锟3, 张毅2, 张振强3, 唐振艳3, 徐超4, 姚苌3,*
1 昆明贵金属研究所稀贵金属综合利用新技术国家重点实验室,昆明 650106
2 昆明学院化学化工学院,昆明 650106
3 云南贵金属实验室有限公司,昆明 650106
4 华东理工大学化工学院,上海 200237
Research Progress on Iridium-based Catalyst Design for Hydrogen Production via Proton Exchange Membrane Water Electrolysis
LI Yinghua1,2, PI Xiaolin3, LI Hongpeng3, TIAN Yiran3, WANG Yukun3, ZHANG Yi2, ZHANG Zhenqiang3,TANG Zhenyan3, XU Chao4, YAO Chang3,*
1 Kunming Institute of Precious Metals, State Key Laboratory of New Technologies for Comprehensive Utilization of Rare and Precious Metals, Kunming 650106, China
2 School of Chemistry and Chemical Engineering, Kunming University, Kunming 650106, China
3 State Key Laboratory of New Technology for Comprehensive Utilization of Rare and Precious Metals, Kunming Institute of Precious Metals, Kunming 650106, China
4 School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
下载:  全 文 ( PDF ) ( 28791KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 质子交换膜(PEM)水电解制氢技术在克服间歇性可再生能源利用障碍以及在减少碳排放方面具有重要意义。由于反应条件苛刻和析氧反应(OER)中的缓慢四电子转移过程,贵金属铱(Ir)凭借其卓越的耐腐蚀性,成为酸性电解水的理想选择。然而,Ir资源的稀缺性和高昂成本严重制约了其商业化和大规模应用。因此,如何合理设计和高效制备Ir基催化剂对电解水制氢至关重要。本文综述了近年来Ir基催化剂在酸性介质中电解水制氢领域的研究进展,重点讨论了三种催化剂的合成策略:特殊形貌的Ir基催化剂合成策略、Ir与其他金属的合金化策略以及氧化铱的改性策略。此外,还展望了PEM水电解OER Ir基催化剂在材料改性方面的发展方向。通过对现有研究成果的综合分析,本文可为未来的研究提供理论基础和实践指导。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李赢华
皮晓琳
李鸿鹏
田乙然
王钰锟
张毅
张振强
唐振艳
徐超
姚苌
关键词:  质子交换膜  析氧反应  电解水  铱催化剂  催化剂设计    
Abstract: Proton exchange membrane (PEM) water electrolysis technology plays a significant role in overcoming the challenges of intermittent rene-wable energy utilization and reducing carbon emissions. Due to the harsh reaction conditions and the slow four-electron transfer process involved in the oxygen evolution reaction (OER), precious metal iridium (Ir), with its exceptional corrosion resistance, has become an ideal choice for acidic water electrolysis. However, the scarcityand high cost of Ir resources severely restrict their commercialization and large-scale application. Therefore, rational design and efficient preparation of Ir-based catalysts are crucial for hydrogen production via water electrolysis. This review introduced recent advances in Ir-based catalysts for hydrogen production in acidic media, focusing on three synthesis strategies:the synthesis of Ir-based catalysts with special morphologies, the alloying strategy of Ir with other metals, and the modification strategy of iridium oxide. Additionally, it outlined future directions for the development of PEM water electrolysis OER Ir-based catalysts in terms of material modification. Through a comprehensive analysis of existing research findings, this work can provide a theoretical foundation and practical guidance for future investigations.
Key words:  proton exchange membrane    oxygen evolution reaction    water electrolysis    iridium catalyst    catalyst design
出版日期:  2025-12-10      发布日期:  2025-12-03
ZTFLH:  TB34  
基金资助: 云南贵金属实验室科技计划(YPML-20240502078;YPML-20240502093;YPML-2023050215)
通讯作者:  *姚苌,博士,云南贵金属实验室有限公司助理研究员。目前研究主要聚焦于高性能聚合物、高端化学品合成中以及电解水反应的催化加氢体系,致力于基于反应机理与数据驱动方法的选择性加氢催化剂设计与优化。yaoc@ipm.com.cn   
作者简介:  李赢华,昆明学院化学化工学院与昆明贵金属研究所联合培养硕士研究生,在唐振艳副研究员和姚苌助理研究员的指导下研究电解水制氢的催化剂设计与性能调控。
引用本文:    
李赢华, 皮晓琳, 李鸿鹏, 田乙然, 王钰锟, 张毅, 张振强, 唐振艳, 徐超, 姚苌. 质子交换膜水电解制氢反应:铱基催化剂设计研究进展[J]. 材料导报, 2025, 39(23): 24110228-13.
LI Yinghua, PI Xiaolin, LI Hongpeng, TIAN Yiran, WANG Yukun, ZHANG Yi, ZHANG Zhenqiang,TANG Zhenyan, XU Chao, YAO Chang. Research Progress on Iridium-based Catalyst Design for Hydrogen Production via Proton Exchange Membrane Water Electrolysis. Materials Reports, 2025, 39(23): 24110228-13.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24110228  或          https://www.mater-rep.com/CN/Y2025/V39/I23/24110228
1 He G N, Mallapragada D S, Bose A, et al. Energy & Environmental Science, 2021, 14(9), 4635.
2 Holladay J D, Hu J, King D L, et al. Catalysis Today, 2009, 139(4), 244.
3 Yu C J. Journal of Catalysis, 2018, 39(3), 390(in Chinese).
俞迟军. 催化学报, 2018, 39(3), 390.
4 Zhou L, Lu S Y, Guo S J. Sus Mat, 2021, 1(2), 194.
5 Tang J, Liu X, Xiong X, et al. Advanced Materials, 2024, 36(41), 2407394.
6 An L L, Zhu J, Yang J H, et al. Nano Materials Science, DOI:10. 1016/j. nanoms. 2024. 01. 011.
7 Zhang L S, Bai J, Zhang S H, et al. ACS Nano, 2024, 18(33), 22095.
8 Wang J W, Cai L J, Yu Z P, et al. Journal of Materials Chemistry A, DOI:10. 1039/d4ta06592a.
9 Jiao J X, Chen D, Zhao H Y, et al. Science China Chemistry, 2024, 68(6), 2217.
10 Cherevko S, Geiger S, Kasian O, et al. Catalysis Today, 2016, 262, 170.
11 Pedersen A F, Escudero-Escribano M, Sebok B, et al. The Journal of Physical Chemistry B, 2017, 122(2), 878.
12 Jiang B, Guo Y N, Kim J, et al. Journal of the American Chemical Society, 2018, 140(39), 12434.
13 Zhang N, Du J Y, Zhou N, et al. Chinese Journal of Catalysis, 2023, 53, 134.
14 Kost M, Kornherr M, Zehetmaier P, et al. Small, 2024, 20(42), 2404118.
15 Guo J W, Mao F X, Fang S R, et al. Journal of Materials Chemistry A, 2024, 12(40), 27280.
16 Zhu Y L, Fan C Y, Shi A W, et al. Shandong Chemical Industry, 2024, 53(9), 98(in Chinese).
主余亮, 范朝阳, 史爱文, 等. 山东化工, 2024, 53(9), 98.
17 Hao S Y, Sheng H Y, Liu M, et al. Nature Nanotechnology, 2021, 16(12), 1371.
18 Xu J, Jin H Y, Lu T, et al. Science Advances, 2023, 9(25), eadh1718.
19 Yao C, Li W H, Ge X H, et al. Chem Cat Chem, 2024, 16(16), e202400027.
20 Yue D, Feng T L, Zhu Z C, et al. ACS Catalysis, 2024, 14(5), 3006.
21 Pittkowski R K, Punke S, Anker A S, et al. Journal of the American Chemical Society, 2024, 146(40), 27517.
22 van der Merwe M, Wibowo R E, Jimenez C E, et al. ACS Catalysis, 2024, 14(22), 16759.
23 Xia J Z, Cao R, Wu Q. Chemistry Bulletin, 2022, 85(10), 1224(in Chinese).
夏杰桢, 曹蓉, 吴琪. 化学通报, 2022, 85(10), 1224.
24 Fan G L, Sun H M, Cheng F Y, et al. Chinese Science:Chemistry, 2019, 49 (5), 741(in Chinese).
樊桂兰, 孙洪明, 程方益, 等. 中国科学:化学, 2019, 49(5), 741.
25 Gao L K, Cui X, Sewell C D, et al. Chemical Society Reviews, 2021, 50(15), 8428.
26 Liu G, Chen M, Yang Y J, et al. Energy Chemical, 2024, 45 (5), 1(in Chinese).
刘岗, 陈满, 杨应举, 等. 能源化工, 2024, 45(5), 1.
27 Wang N, Ou P F, Miao R K, et al. Journal of the American Chemical Society, 2023, 145(14), 7829.
28 Li W Q, Bu Y F, Ge X L, et al. Chem Sus Chem, 2024, 17(13), e202400295.
29 Cao J, Mou T, Mei B B, et al. Angewandte Chemie International Edition, 2023, 62(43), e202310973.
30 Wang Q L, Xu C Q, Liu W, et al. Nature Communications, 2020, 11(1), 4246.
31 Yeo K R, Lee K S, Kim H, et al. Energy & Environmental Science, 2022, 15(8), 3449.
32 Xie Y H, Feng Y M, Pan S Y, et al. Advanced Functional Materials, 2024, 34(41), 2406351.
33 Zhu J W, Xie M H, Chen Z T, et al. Advanced Energy Materials, 2020, 10(16), 1904114.
34 Zhang Z Q, Xia Y, Ye M, et al. International Journal of Hydrogen Energy, 2022, 47(27), 13371.
35 Cai C, Wang M Y, Han S B, et al. ACS Catalysis, 2020, 11(1), 123.
36 Yan T Q, Chen S Y, Sun W D, et al. ACS Applied Materials & Interfaces, 2023, 15(5), 6912.
37 Parizad M, Wong A P, Reber A C, et al. ACS Catalysis, 2020, 10(22), 13352.
38 Tackett B M, Sheng W C, Kattel S, et al. ACS Catalysis, 2018, 8(3), 2615.
39 Shan J Q, Guo C X, Zhu Y H, et al. Chem, 2019, 5(2), 445.
40 Wang H M, Chen Z N, Wang Y Y, et al. National Science Review, 2024, 11(4), nwae056.
41 Zheng Y, Zhang F R, Wang G L, et al. Journal of Power Sources, 2022, 528, 231189.
42 Kim K S, Park S A, Jung H D, et al. ACS Catalysis, 2022, 12(11), 6334.
43 Xu J B, Chang L, Wei Y P, et al. ACS Nano, 2024, 18(42), 29140.
44 Ding H, Su C J, Wu J B, et al. Journal of the American Chemical Society, 2024, 146(11), 7858.
45 Wang C, Sui Y M, Xiao G J, et al. Journal of Materials Chemistry A, 2015, 3(39), 19669.
46 Kwon T, Hwang H, Sa Y J, et al. Advanced Functional Materials, 2017, 27(7), 1604688.
47 Han W W, Qian Y, Zhang F, et al. Chemical Engineering Journal, 2023, 473, 145353.
48 Zhu J W, Chen Z T, Xie M H, et al. Angewandte Chemie International Edition, 2019, 58(22), 7244.
49 Wang S A, Yang S, Wei Z Q, et al. Journal of Materials Chemistry A, 2022, 10(48), 25556.
50 Xu J Y, Lian Z, Wei B, et al. ACS Catalysis, 2020, 10(6), 3571.
51 Liu J L, Xiao J X, Wang Z Y, et al. ACS Catalysis, 2021, 11(9), 5386.
52 Li C, Zhang W, Cao Y Y, et al. Advanced Science, 2024, 11(28), 2401780.
53 Chen Y X, Meng J, Xu M, et al. Advanced Functional Materials, 2024, 2413474.
54 Chueh L Y, Kuo C H, Yang R H, et al. Chemical Engineering Journal, 2023, 464, 142613.
55 Liu S H, Tan H, Huang Y C, et al. Advanced Materials, 2023, 35(42), 2305659.
56 Pi Y C, Shao Q, Wang P T, et al. Advanced Functional Materials, 2017, 27(27), 1700886.
57 Pi Y C, Shao Q, Zhu X, et al. ACS Nano, 2018, 12(7), 7371.
58 Chang Y N, Lu X Y, Wang S H, et al. Small, 2024, 20(29), 2311763.
59 Zhu H, Wang Y J, Jiang Z Q, et al. Advanced Energy Materials, 2024, 14(14), 2303987.
60 Shi Q R, Zhu C Z, Zhong H, et al. ACS Energy Letters, 2018, 3(9), 2038.
61 Lv F, Feng J R, Wang K, et al. ACS Central Science, 2018, 4(9), 1244.
62 Zhang J L, Cao X M, Jiang Y F, et al. Chemical Science, 2022, 13(41), 12114.
63 Yang X, Wu Z H, Xing Z Y, et al. Small, 2023, 19(27), 2208261.
64 Jiang Y, Mao Y N, Jiang Y M, et al. Chemical Engineering Journal, 2022, 450, 137909.
65 Xiao M Y, Xu W L, Li R C, et al. Journal of Energy Chemistry, 2024, 92, 579.
66 Zhang T, Liao S A, Dai L X, et al. Science China Materials, 2018, 61(7), 926.
67 Yang A Z, Su K Y, Wang S Z, et al. Applied Surface Science, 2020, 510, 145408.
68 Guo H Y, Fang Z W, Li H, et al. ACS Nano, 2019, 13(11), 13225.
69 Hu H, Kazim F M D, Ye Z H, et al. Journal of Materials Chemistry A, 2020, 8(38), 20168.
70 You H H, Wang Y Y, Sun F F, et al. ACS Materials Letters, 2023, 5(11), 2887.
71 Zhang S, Zhang X, Shi X R, et al. Journal of Energy Chemistry, 2020, 49, 166.
72 Jiang P, Huang H, Diao J F, et al. Applied Catalysis B: Environmental, 2019, 258, 117965.
73 Zhao Y, Luo M, Chu S F, et al. Nano Energy, 2019, 59, 146.
74 Qiao Y J, Luo M, Cai L B, et al. Small, 2023, 20(2), 2305479.
75 Sun J Y, Qin Y, Niu X P, et al. Journal of Colloid and Interface Science, 2024, 661, 249.
76 Xiong X X, Tang J L, Ji Y, et al. Advanced Energy Materials, 2024, 14(20), 2304479.
77 Zhou P F, Liu D, Chen Y Y, et al. Journal of Materials Science & Technology, 2022, 109, 267.
78 Sun X Y, Sun Y G. Chemical Society Reviews, 2024, 53(9), 4400.
79 Liu H, Qin H Y, Kang J L, et al. Chemical Engineering Journal, 2022, 435, 134898.
80 Wang H Y, Wei R, Li X M, et al. Journal of Materials Science & Technology, 2021, 68, 191.
81 Tang J, Xu J L, Ye Z G, et al. Journal of Materials Science & Technology, 2021, 79, 171.
82 Kwon J, Sun S, Choi S, et al. Advanced Materials, 2023, 35(26), 2300091.
83 Jin Z Y, Lv J, Jia H L, et al. Small, 2019, 15(47), 1904180.
84 Yao L P, Zhang F R, Yang S, et al. Advanced Materials, 2024, 36(25), 2314049.
85 Hu C, Yue K H, Han J J, et al. Science Advances, 2023, 9(37), eadf9144.
86 Jia R N, Xia M H, Tang L, et al. ACS Catalysis, 2022, 12(21), 13513.
87 Hong S, Ham K, Hwang J, et al. Advanced Functional Materials, 2022, 33(1), 2209543.
88 Lu Z X, Shi Y, Shen L S, et al. International Journal of Hydrogen Energy, 2023, 48(21), 7549.
89 Yang Y F, Zhou T X, Zeng Z, et al. Journal of Colloid and Interface Science, 2024, 659, 191.
90 He J, Zhou X, Xu P, et al. Advanced Energy Materials, 2021, 11(48), 2102883.
91 Qin K Y, Yu H, Zhu W X, et al. Advanced Functional Materials, 2024, 2402226.
92 Zhu W X, Song X C, Liao F, et al. Nature Communications, 2023, 14(1), 5365.
93 Zhang F F, Cheng C Q, Wang J Q, et al. ACS Energy Letters, 2021, 1588.
94 Wang Y N, Zhang M C, Kang Z Y, et al. Nature Communications, 2023, 14(1), 5119.
95 Esterhuizen J A, Mathur A, Goldsmith B R, et al. Journal of the American Chemical Society, 2024, 146(8), 5511.
96 Liang X, Shi L, Cao R, et al. Advanced Materials, 2020, 32(34), 2001430.
97 You M S, Xu Y, He B B, et al. Applied Catalysis B: Environmental, 2022, 315, 121579.
98 Seitz L C, Dickens C F, Nishio K, et al. Science, 2016, 353(6303), 1011.
99 Yang L, Yu G T, Ai X, et al. Nature Communications, 2018, 9(1), 5236.
100 Zhao L, Tao Z T, You M S, et al. Advanced Science, 2024, 11(24), 2309750.
101 Huang Y L, Xiao H W, He B B, et al. Journal of Energy Chemistry, 2024, 99, 325.
102 Chen Y B, Li H Y, Wang J X, et al. Nature Communications, 2019, 10(1), 572.
103 Vos J G, Liu Z C, Speck F D, et al. ACS Catalysis, 2019, 9(9), 8561.
104 Zhang Q, Chen H, Yang L, et al. Chinese Journal of Catalysis, 2022, 43(3), 885.
105 Gao R Q, Zhang Q, Chen H, et al. Journal of Energy Chemistry, 2020, 47, 291.
106 Retuerto M, Pascual L, Torrero J, et al. Nature Communications, 2022, 13(1), 7935.
107 Ganguly S, Datta R, Basera P, et al. ACS Sustainable Chemistry & Engineering, 2023, 12(2), 849.
108 Zhu L, Ma C L, Wang Z Q, et al. Applied Surface Science, 2022, 576, 151840.
109 Sun W, Liu J Y, Gong X Q, et al. Scientific Reports, 2016, 6(1), 38429.
110 Pittkowski R K, Abbott D F, Nebel R, et al. Electrochimica Acta, 2021, 366, 137327.
111 Shang C Y, Cao C, Yu D Y, et al. Advanced Materials, 2018, 31(6), 1805104.
[1] 吕超杰, 成伽润, 关春阳, 鲁成兴, 李美平, 张丹. 界面工程化Ni(OH)2@CoP核壳结构纳米阵列电解水性能研究[J]. 材料导报, 2025, 39(13): 24050219-10.
[2] 薛世翔, 吴攀, 赵亮, 雷琬莹. NiO@CoFe LDH/NF纳米片阵列用于高效析氧反应[J]. 材料导报, 2025, 39(11): 24040131-7.
[3] 赵涔凯, 邹杰鑫, 王旻, 李思明, 赵微, 张时林, 滕珏瑾, 王艳皎, 吴明铂, 胡涵, 李亚伟. 基于阴离子交换膜电解水的离聚物研究进展[J]. 材料导报, 2024, 38(8): 23080132-11.
[4] 刘卉, 杨牛娃, 马梦圆, 田少囡, 张玉, 杨军. 金属基磷化物纳米材料制备与电催化应用研究进展[J]. 材料导报, 2024, 38(8): 23080249-17.
[5] 尹燕, 尹硕尧, 陈斌, 冯英杰, 张俊锋. 高性能Ir基阳极双催化层阴离子交换膜电解水[J]. 材料导报, 2024, 38(6): 23040182-7.
[6] 李兰心, 潘牧, 郭伟. 质子交换膜燃料电池在线监测方法研究进展[J]. 材料导报, 2024, 38(6): 22070018-14.
[7] 邓开鑫, 刘澄虎, 于志庆, 黄文斌, 魏强, 周亚松. 碳化钼的结构、制备及应用研究进展[J]. 材料导报, 2024, 38(5): 22080058-18.
[8] 贾飞宏, 卫学玲, 包维维, 邹祥宇. MoS2/Ni3S2/NF双功能电催化剂用于高效全水解[J]. 材料导报, 2024, 38(4): 22040365-7.
[9] 柴瑞瑞, 桑欣欣, 欧世国, 李家豪, 王大伟. 生物基MOFs衍生Co9S8/N,O-C电催化剂的析氧性能[J]. 材料导报, 2024, 38(19): 22120095-8.
[10] 刘向阳, 王议, 夏爽, 刘中清. 镍铁双氢氧化物的响应曲面法优化生长和电催化析氧性能研究[J]. 材料导报, 2024, 38(16): 23040152-5.
[11] 狄大程, 李明哲, 李羿龙, 凌子昱, 吕玉珍, 陈克丕. 质子交换膜电解水用非贵金属基析氧反应催化剂的研究进展[J]. 材料导报, 2024, 38(13): 23020032-16.
[12] 陈亚楠, 刘培涛, 祖延清, 韩逢博, 李晓东, 毕鹏飞, 冯爱玲. 基于N,P共掺杂碳纳米片的富S空位Co/Co9S8复合物作为双功能催化剂用于可充锌-空气电池[J]. 材料导报, 2024, 38(12): 23010013-5.
[13] 庄明兴, 卡盖·索音图, 付文英, 司司, 余添玉, 杨俊东, 章剑, 梁宇欣, 赵新生, 魏永生. 硼/磷掺杂电解水析氢金属催化剂的研究现状与进展[J]. 材料导报, 2023, 37(S1): 22080121-11.
[14] 赵帅凯, 李亚如, 任永鹏, 王长记, 潘昆明, 王利萌, 吕贝贝, 夏梁彬, 陈雪敏. ZIF衍生材料在ORR、OER和HER领域的应用研究进展[J]. 材料导报, 2023, 37(S1): 23010012-12.
[15] 王叶超, 肖遥, 胡芳馨, 杨鸿斌. 不锈钢催化电极在氧析出中的研究进展[J]. 材料导报, 2023, 37(20): 22040218-11.
[1] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[2] LIU Shuaiyang, WANG Aiqin, LYU Shijing, TIAN Hanwei. Interfacial Properties and Further Processing of Cu/Al Laminated Composite: a Review[J]. Materials Reports, 2018, 32(5): 828 -835 .
[3] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[4] CAO Xiuzhong, ZHAO Bing, HAN Xiuquan, HOU Hongliang, QU Haitao. Research on Deformation Mechanism of SiC Fiber Reinforced Titanium Matrix Composites Subjected to High Temperature Axial Tension[J]. Materials Reports, 2017, 31(8): 88 -93 .
[5] ZHANG Jiaqing, ZHANG Bosi, WANG Liufang, FAN Minghao, XIE Hui, LI Wei. The State of the Art of Combustion Behavior of Live Wires and Cables[J]. Materials Reports, 2017, 31(15): 1 -9 .
[6] LI Xueyun, WANG Hezhong. Optimization and Characterization of TEMPO-Mediated Oxidization of Nanochitin Whiskers[J]. Materials Reports, 2018, 32(10): 1597 -1601 .
[7] ZHAO Qingchen, WANG Jinlong, ZHANG Yuanliang, SHEN Yihong, LIU Shujie. Fatigue Behavior and Fatigue Life for FV520B-I at Different Loading Frequencies[J]. Materials Reports, 2018, 32(16): 2837 -2841 .
[8] ZHOU Chao, WANG Hui, OUYANG Liuzhang, ZHU Min. The State of the Art of Hydrogen Storage Materials for High-pressure Hybrid Hydrogen Vessel[J]. Materials Reports, 2019, 33(1): 117 -126 .
[9] WANG Huifen, LIU Gang, CAO Kangli, YANG Biqi, XU Jun, LAN Shaofei, ZHANG Lixin. Development Status of Carbon Nanotube Materials and Their Application Prospects in Spacecraft[J]. Materials Reports, 2019, 33(z1): 78 -83 .
[10] LEI Lin, YANG Qingbo, ZHANG Zhiqing, FAN Xiangze, LI Xu, YANG Mou, DENG Zanhui. Multi-pass Compression Behavior and Microstructure Evolution of AA2195 Aluminum Lithium Alloy[J]. Materials Reports, 2019, 33(z1): 348 -352 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed