Please wait a minute...
材料导报  2025, Vol. 39 Issue (13): 24050219-10    https://doi.org/10.11896/cldb.24050219
  无机非金属及其复合材料 |
界面工程化Ni(OH)2@CoP核壳结构纳米阵列电解水性能研究
吕超杰1,*, 成伽润1, 关春阳1, 鲁成兴2, 李美平3, 张丹4
1 太原科技大学化学工程与技术学院,太原 030024
2 天津师范大学物理与材料科学学院,天津 300387
3 中国科学院化学研究所,北京 100190
4 山西医科大学法医学院,太原 030607
Interfacial Engineered Ni(OH)2@CoP Core-Shell Nanoarrays for Enhanced Electrocatalytic Water Splitting Performance
LYU Chaojie1,*, CHENG Jiarun1, GUAN Chunyang1, LU Chengxin2, LI Meiping3, ZHANG Dan4
1 School of Chemical Engineering and Technology, Taiyuan University of Science and Technology, Taiyuan 030024, China
2 College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387, China
3 Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
4 School of Forensic Medicine, Shanxi Medical University, Taiyuan 030607, China
下载:  全 文 ( PDF ) ( 28320KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 过渡金属基电催化剂因其丰富的地球储量和低廉的制造成本,被视为未来替代贵金属基电解水制氢催化剂的有力候选材料之一。但较低的导电性、较差的催化活性以及极速衰减的催化稳定性使其单独使用时催化性能差强人意,故必须进行合理改性进而提升其催化性能。界面工程已被证实为调控催化位点电子结构、优化活性位点与反应中间体的吸附能以及提升材料催化性能的有效手段之一。基于此,本研究以泡沫镍为基底,通过水热法-磷化法-电沉积法系列操作,制得Ni(OH)2纳米片/CoP纳米线的自支撑异质核壳阵列结构(Ni(OH)2@CoP/NF)。其中,Ni(OH)2与CoP之间的异质界面会导致界面域电子的定向转移以及对Co位点的电子结构调制,这不仅会在界面区域产生大量的高活性位点,还可以将活性位点优化到最佳状态,从而获得更高的催化活性。得益于此,在1 mol/L KOH溶液中,Ni(OH)2@CoP/NF作为析氧反应和析氢反应催化材料时,分别仅需224 mV和65 mV的过电位即可达到10 mA·cm-2的电流密度。作为双功能催化剂,该电极所组装的双电极体系仅需1.52 V即可实现10 mA·cm-2的电流输出,且兼具良好的催化耐久性。本研究为设计制备高效双功能电解水制氢催化剂提供了一个全新的思路,对进一步拓展非贵过渡金属化合物的工业化应用具有重要意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吕超杰
成伽润
关春阳
鲁成兴
李美平
张丹
关键词:  电解水制氢  过渡金属化合物  界面工程  氢氧化镍@磷化钴核壳阵列结构  双功能电解水催化剂    
Abstract: Transition metal-based electrocatalysts are regarded as one of the powerful candidates to replace noble metal-based electrolysis water hydrogen production catalysts in the future because of their abundant earth reserves and low manufacturing cost. However, due to its low electrical conductivity, poor catalytic activity and catalytic stability of rapid decay, the monomer always displays poor catalytic performance, so it must be modified reasonably to improve its catalytic performance. Interface engineering has been proven to be one of the effective means to regulate the electronic structure of catalytic sites, optimize the adsorption energy of reaction intermediates and improve the catalytic performance of mate-rials. Based on this, the self-supporting heterogeneous core-shell array of Ni(OH)2 nanosheets/CoP nanowires was prepared by hydrothermal, phosphating and electrodeposition on nickel foam support (Ni(OH)2@CoP/NF). Among them, the heterogeneous interface between Ni(OH)2 and CoP leads to the directional electron transfer in the interface domain and the modulation of the electronic structure of the Ni sites, which not only generates a large number of new active sites in the interface region, but also optimizes the active sites to the best state, thus obtaining higher catalytic activity. Benefitting from this, when Ni(OH)2@CoP/NF is used as the catalytic material for oxygen evolution and hydrogen evolution reactions in 1 mol/L KOH solution, the overpotentials of only 224 mV and 65 mV are required to reach a current density of 10 mA·cm-2. As a bifunctional catalyst, the two-electrode system assembled with the electrode can achieve a current output of 10 mA·cm-2 with only 1.52 V, and also shows excellent catalytic durability. This study provides a new idea for the design and preparation of an efficient bifunctional water electrolysis catalyst for hydrogen production, which is of great significance for the further development of industrial application of non-precious transition metal compounds.
Key words:  hydrogen evolution reaction (HER)    transition metal compound    interface engineering    nickel hydroxide@cobalt phosphide core-shell array structure    bifunctional water electrolysis catalyst
出版日期:  2025-07-10      发布日期:  2025-07-21
ZTFLH:  O646.6  
基金资助: 太原科技大学博士科研启动基金(20242007)
通讯作者:  *吕超杰,太原科技大学化学工程与技术学院讲师、硕士研究生导师。目前主要从事能源存储和转化材料等方面的研究工作。chaojielyu@tyust.edu.cn   
引用本文:    
吕超杰, 成伽润, 关春阳, 鲁成兴, 李美平, 张丹. 界面工程化Ni(OH)2@CoP核壳结构纳米阵列电解水性能研究[J]. 材料导报, 2025, 39(13): 24050219-10.
LYU Chaojie, CHENG Jiarun, GUAN Chunyang, LU Chengxin, LI Meiping, ZHANG Dan. Interfacial Engineered Ni(OH)2@CoP Core-Shell Nanoarrays for Enhanced Electrocatalytic Water Splitting Performance. Materials Reports, 2025, 39(13): 24050219-10.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24050219  或          https://www.mater-rep.com/CN/Y2025/V39/I13/24050219
1 Yang H, Yang Y, Yang W, et al.Energy & Environmental Science, 2024, 17, 1975.
2 Yang J R, Zhu C X, Li W H, et al.Angewandte Chemie International Edition, 2024, 63, 2314382.
3 Zhu H, Wang Y J, Jiang Z Q, et al.Advanced Energy Materials, 2024, 14, 2303987.
4 Zhu J, Lu R, Xia F, et al.Nano Energy, 2023, 110, 108349.
5 Lyu C, Cao C, Cheng J, et al.Chemical Engineering Journal, 2023, 464, 142538.
6 Wei L, Wang J, Zhao Z, et al.Chemical Engineering Journal, 2022, 427, 130931.
7 Zhang X, Qiu Y, Li Q, et al.Journal of Power Sources, 2022, 522, 231004.
8 Zhu J, Lu R, Shi W, et al.Energy & Environmental Materials, 2022, 6, 12318.
9 Zhu J, Zheng X, Liu C, et al.Journal of Colloid and Interface Science, 2023, 630, 559.
10 Zheng X, Yuan M, Huang X, et al.Chinese Chemical Letters, 2023, 34, 107152.
11 Lyu C, Cheng J, Wu K, et al.Applied Catalysis B:Environmental, 2022, 317, 121799.
12 Zhang L, Rong J, Yang Y, et al.Small, 2023, 19, 2207472.
13 Zhang H, Diao J, Ouyang M, et al.ACS Catalysis, 2023, 13, 1349.
14 Dhakal P P, Pan U N, Kandel M R, et al.Chemical Engineering Journal, 2023, 473, 145321.
15 Lu M, Li L, Chen D, et al.Electrochimica Acta, 2020, 330, 135210.
16 Cao E, Chen Z, Wu H, et al.Angewandte Chemie International Edition, 2020, 59, 4154.
17 Chen Q, Yang X, Hou C, et al.Journal of Materials Chemistry A, 2019, 7, 11062.
18 Cai Z, Li L, Zhang Y, et al.Angewandte Chemie International Edition, 2019, 58, 4189.
19 Sun H M, Yao B C, Han Y X, et al.Advanced Energy Materials, 2024, 14, 2303563.
20 Long Y, Shen Y, Jiang P, et al.Science Bulletin, 2024, 69, 763.
21 Wu Z, Feng Y, Qin Z, et al.Small, 2022, 18, 2106904.
22 Zhang W, Li C, Ji J, et al.Chemical Engineering Journal, 2023, 461, 141937.
23 Dhanabalan K, Bhosale M, Murugan N, et al.Journal of Solid State Chemistry, 2024, 335, 124702.
24 Yu S S, Xu J, Wang Q Y, et al.Journal of Alloys and Compounds, 2024, 977, 173433.
25 Liu X Y, Wang M, Ji S, et al.International Journal of Hydrogen Energy, 2024, 67, 192.
26 Wang L, Lv W Y, Yang Y, et al.Journal of Alloys and Compounds, 2024, 995, 174754.
27 Zeng S H, Zeng X Q, Jiang L, et al.Journal of Alloys and Compounds, 2024, 996, 174868.
28 Fomekong R L, Akir S, Oliveira F M, et al.Journal of Power Sources, 2024, 602, 234293.
29 Teng X A, Wang Z B, Wu Y S, et al.Nano Energy, 2024, 122, 109299.
30 Yang W D, Zhao R D, Guo F Y, et al.Chemical Engineering Journal, 2023, 454, 140458.
31 Wang X, Yu X, Wu S, et al.ACS applied materials & interfaces, 2023, 15, 15533.
32 Wang T, Chu X X, Dong X L, et al.Journal of Alloys and Compounds, 2024, 990, 174445.
33 Zhao J Q, Zhang C X, Zhang Z H, et al.Applied Catalysis A, 2024, 681, 119780.
34 Tong X N, Wang J L, Yang Y T, et al.Surfaces and Interfaces, 2024, 48, 104345.
35 Tang G X, Chen Y, Chen J J, et al.Chemical Engineering Science, 2024, 296, 120242.
36 Jing L, Wang Y N, Jiang W, et al.International Journal of Hydrogen Energy, 2024, 69, 195.
37 Xu X K, Jiang Y H, Cheng K W, et al.Electrochimica Acta, 2024, 483, 144046.
38 Zhang T, Zhao Y X, Liu F X, et al.International Journal of Hydrogen Energy, 2024, 58, 646.
39 Yang G J, Liu F, Fu Y J, et al.Journal of Physics and Chemistry of Solids, 2024, 191, 112051.
40 Kannan K, Chanda D, Gautam J, et al.International Journal of Hydrogen Energy, 2023, 48, 13814.
41 Si F Y, Wei M, Li M L, et al.Journal of Power Sources, 2022, 538, 231536.
42 Zhang W T, Zhong X X, Qin H M, et al.Electrochimica Acta, 2024, 482, 144000.
43 Jayaraman V, Jang G, Kim D H.Applied Surface Science, 2024, 652, 159336.
44 Wang X W, Yu M, Lv C M, et al.Flatchem, 2024, 45, 100660.
45 Sun L, Zhao S, Sha L, et al.Journal of Colloid and Interface Science, 2023, 637, 76.
46 Luo Q, Sun L, Zhao Y, et al.Journal of Materials Science & Technology, 2023, 145, 165.
47 Zhang L, Wang Z, Zhang J, et al.Nano Research, 2022, 16, 6552.
[1] 陈浩霖, 赵佳薇, 张俊豪, 于博, 张强飞, 罗倪, 刘振国. SAMs在n-i-p型钙钛矿太阳能电池界面工程中的应用[J]. 材料导报, 2025, 39(5): 24010233-12.
[2] 张霞, 吴瑛, 袁牧锋, 王春栋. MOFs衍生物在尿素氧化中的研究进展[J]. 材料导报, 2024, 38(6): 23020193-10.
[3] 张亚玲, 程国君, 唐忠锋, 万祥龙, 丁国新, 王周锋. PVA基复合材料导热性能的研究进展[J]. 材料导报, 2024, 38(16): 23060217-10.
[4] 吴强, 张薇, 余创, 程时杰, 谢佳. 高硫含量正极在锂硫电池中的研究进展[J]. 材料导报, 2023, 37(15): 21100175-15.
[5] 张铃, 杨钦如, 余梦, 黄锐明, 程其进. CuSCN作为石墨烯/硅异质结太阳能电池无机界面层的数值模拟[J]. 材料导报, 2021, 35(4): 4001-4006.
[6] 杨飞, 周丹, 秦元成, 徐海涛, 张余宝, 张芹, 谢宇, 李明俊. 有机太阳能电池电子传输层材料研究进展[J]. 材料导报, 2020, 34(11): 11081-11089.
[7] 周丹, 秦元成, 徐海涛, 李明俊. 有机太阳能电池阴极界面层概述[J]. 材料导报, 2018, 32(13): 2143-2150.
[8] 傅瑜,何俊宝,张萍,冷玉敏,马奔原,李纪燕. 过渡金属铋化物BaAg2-δBi2单晶的制备和物理性质[J]. 《材料导报》期刊社, 2018, 32(12): 2043-2046.
[1] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[2] WU Wei, CHEN Shiying, ZONG Mengjingzi. Dielectric Properties and Thermal Stability of Nano-Al2O3/Polyether Sulfone-epoxy Resin Composites[J]. Materials Reports, 2017, 31(20): 21 -24 .
[3] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[4] MO Peicheng, WU Yi, YU Wenlin, WANG Jilin, ZOU Zhengguang, ZHONG Shenglin, WANG Peng. In Situ Synthesis of PcBN Composites by cBN-Ti-Al-Si and Their Mechanical Property[J]. Materials Reports, 2018, 32(14): 2355 -2359 .
[5] HU Yaoqiang, CHEN Fajin, LIU Haining, ZHANG Huifang, WU Zhijian, YE Xiushen. Preparation of Poly(N-isopropylacrylamide) Hydrogel and Its Thermally Induced Aggregation Behavior[J]. Materials Reports, 2018, 32(14): 2491 -2496 .
[6] SONG Gang, CHI Jiayu, YU Jingwei, LIU Liming. Corrosion Behavior of Mg-steel Laser-TIG Hybrid Welding Joint[J]. Materials Reports, 2018, 32(16): 2773 -2777 .
[7] HUANG Hui, HAN Jianfeng, WANG Yishun, XIA Yang, ZHANG Jun, GAN Yongping, LIANG Chu, ZHANG Wenkui. Supercritical CO2 Assisting Cladding of LiMnPO4 on the Surface of Li[Li0.2-Mn0.54Co0.13Ni0.13]O2 and Its Electrochemical Properties[J]. Materials Reports, 2018, 32(23): 4072 -4078 .
[8] WANG Zhonghui, XIN Yong. Molecular Dynamics Simulation on the Relationship of Oxygen Diffusion and Polymer Chains Activity[J]. Materials Reports, 2019, 33(8): 1293 -1297 .
[9] CHANG Jingjing. Spin Coating Epitaxial Films[J]. Materials Reports, 2019, 33(12): 1919 -1920 .
[10] ZHUANG Xiaodong, LI Rongxing, YU Xiaohua, XIE Gang, HE Xiaocai, XU Qingxin. Preparation of Lithium Titanate Electrode Materials by Solid Phase Method[J]. Materials Reports, 2019, 33(16): 2654 -2659 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed