Please wait a minute...
材料导报  2025, Vol. 39 Issue (13): 24050193-8    https://doi.org/10.11896/cldb.24050193
  高分子与聚合物基复合材料 |
外电场下极性基团对聚丙烯单分子链沿面放电影响的研究
李亚莎*, 曾跃凯, 赵光辉, 田泽, 王璐敏, 吴雕
三峡大学电气与新能源学院,湖北 宜昌 443002
Study of Effect of Polar Groups on the Discharge of Polypropylene Monomolecular Chains Along the Surface Under External Electric Field
LI Yasha*, ZENG Yuekai, ZHAO Guanghui, TIAN Ze, WANG Lumin, WU Diao
College of Electrical and New Energy, China Three Gorges University, Yichang 443002, Hubei, China
下载:  全 文 ( PDF ) ( 9967KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 聚丙烯是一种性能优异的绝缘材料,在高压电缆绝缘领域受到广泛关注,但其老化后绝缘性能会大幅下降,加之实际运行环境恶劣,沿面放电现象时常发生。为从微观层面探讨材料老化后产生的极性基团对聚丙烯沿面放电特性的影响,基于密度泛函理论对电场下不同聚丙烯分子链的几何结构、轨道能级、态密度、陷阱深度、激发态等微观参数进行分析。结果表明,极性基团的引入会造成分子链卷曲程度增大、偶极矩上升,易在材料表面形成极化电荷;电场作用下分子陷阱深度不断增大,含极性基团的分子陷阱深度更小,有利于电子脱陷,增加放电次数;极性基团区域的亲电活性使陷阱捕获的电子相对活泼,在沿面放电过程中,该区域积聚的电子由于活性较强会促进电子崩的发展;分子含极性基团后激发能显著降低,极性基团区域成为电子激励与反激励的主要场所,在反激励过程中电子与空穴复合发射光子,形成发光中心,加速材料老化,并在材料表面气隙形成空间光电离,提高沿面放电概率。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李亚莎
曾跃凯
赵光辉
田泽
王璐敏
吴雕
关键词:  密度泛函理论  聚丙烯  外电场  沿面放电  陷阱特性    
Abstract: Polypropylene is a type of insulating material with excellent performance, which has received significant attention in the field of high-voltage cable insulation. However, its insulating properties decrease significantly after aging, particularly in conjunction with the harsh actual operating environment. This can result in the phenomenon of surface discharge occurring from time to time. In order to investigate the impact of polar groups on the along-surface discharge characteristics of polypropylene at the microscopic level, this paper employs a microscopic analysis of the aforementioned parameters, including the geometrical structure, orbital energy level, density of states, depth of traps, and excited states of different polypropylene molecular chains under the electric field, based on the density functional theory. The results demonstrate that the introduction of polar groups leads to an increase in the degree of curling of the molecular chain, an elevation in the dipole moment, and the formation of a polarized charge on the surface of the material. The depth of the molecular traps is increased by the action of the electric field, with those containing polar groups having a smaller depth, which is favourable for electron de-trapping and increases the number of discharges. The electrophilic activity of the polar group region renders the trapped electrons relatively active, and the accumulated electrons in the region during the process of along-surface discharge. The strong activity will promote the development of electron avalanche. Molecules containing polar groups will experience a significant reduction in excitation energy, with the polar group region becoming the main place of electronic excitation and counter-excitation. In the process of electron and hole composite emission photons, the formation of a luminescence centre will accelerate material ageing, and the formation of space photoionisation in the air gap on the surface of the material will increase the probability of along-surface discharges.
Key words:  density functional theory    polypropylene    external electric field    surface discharge    trap property
出版日期:  2025-07-10      发布日期:  2025-07-21
ZTFLH:  TM211  
基金资助: 国家自然科学基金(51577105)
通讯作者:  *李亚莎,博士,三峡大学电气与新能源学院教授、博士研究生导师。目前主要从事电力系统绝缘老化与电磁场数值仿真计算等方面的研究。liyasha@ctgu.edu.cn   
引用本文:    
李亚莎, 曾跃凯, 赵光辉, 田泽, 王璐敏, 吴雕. 外电场下极性基团对聚丙烯单分子链沿面放电影响的研究[J]. 材料导报, 2025, 39(13): 24050193-8.
LI Yasha, ZENG Yuekai, ZHAO Guanghui, TIAN Ze, WANG Lumin, WU Diao. Study of Effect of Polar Groups on the Discharge of Polypropylene Monomolecular Chains Along the Surface Under External Electric Field. Materials Reports, 2025, 39(13): 24050193-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24050193  或          https://www.mater-rep.com/CN/Y2025/V39/I13/24050193
1 Zhou Xiaoxin, Lu Zongxiang, Liu Yingmei, et al.Chinese Journal of Electrical Engineering, 2014, 34(29), 4999 (in Chinese).
周孝信, 鲁宗相, 刘应梅, 等. 中国电机工程学报, 2014, 34(29), 4999.
2 He Jinliang, Peng Lin, Zhou Yao.High Voltage Technology, 2017, 43(2), 337 (in Chinese).
何金良, 彭琳, 周垚. 高电压技术, 2017, 43(2), 337.
3 Tazawa S.The Transaction of the Institute of Electrical Enginneers of Japan B, 2003, 123(3), 265.
4 Huang Xingyi, Zhang Jun, Jiang Pingkai.High Voltage Technology, 2018, 44(5), 1377 (in Chinese).
黄兴溢, 张军, 江平开. 高电压技术, 2018, 44(5), 1377.
5 Zhou Y, Hu J, Dang B, et al.IEEE Transactions on Dielectrics and Electrical Insulation, 2017, 24(3), 1380.
6 Hosier I L, Cozzarini L, Vaughan A S, et al.Journal of Physics:Confe-rence Series, 2009, 183(1), 012015.
7 Zha J W, Wu Y H, Wang S J, et al.IEEE Transactions on Dielectrics and Electrical Insulation, 2016, 23(4), 2337.
8 Yang Rui, Liu Ying, Yu Jian.Polymer Bulletin, 2011(4), 68 (in Chinese).
杨睿, 刘颖, 于建. 高分子通报, 2011(4), 68.
9 Fan Linzhen, Li Qi, Yuan Hao, et al.Chinese Journal of Electrical Engineering, 2022, 42(11), 4227 (in Chinese).
樊林禛, 李琦, 袁浩, 等. 中国电机工程学报, 2022, 42(11), 4227.
10 Zhao Peng, Ouyang Benhong, Huang Kaiwen, et al.High Voltage Technology, 2022, 48(7), 2642 (in Chinese).
赵鹏, 欧阳本红, 黄凯文, 等. 高电压技术, 2022, 48(7), 2642.
11 Couderc H, Fréchette M, David E. In:IEEE Electrical Insulation Confe-rence(EIC). Seattle, USA, 2015, pp. 329.
12 Liao Ruijin, Xiang Min, Yuan Yuan, et al.High Voltage Technology, 2019, 45(3), 681 (in Chinese).
廖瑞金, 项敏, 袁媛, 等. 高电压技术, 2019, 45(3), 681.
13 Li Yasha, Zhao Guanghui, Zeng Yuekai, et al.Engineering Plastics Applications, 2024, 52(3), 13 (in Chinese).
李亚莎, 赵光辉, 曾跃凯, 等. 工程塑料应用, 2024, 52(3), 13.
14 Hou Shiying, Liang Jiaming, Yang Fan, et al.High Voltage Technology, 2023, 49(7), 3062 (in Chinese).
侯世英, 梁家鸣, 杨 帆, 等. 高电压技术, 2023, 49(7), 3062.
15 Li Yasha, Xia Yu, HuHuoran, et al.High Voltage Technology, 2022, 48(3), 839 (in Chinese).
李亚莎, 夏宇, 胡豁然, 等. 高电压技术, 2022, 48(3), 839.
16 Shen Yao, Liu Xingjie, Liang Ying, et al.Journal of Electrotechnology, DOI:10.19595/j.cnki.1000-6753.tces.231031 (in Chinese).
沈瑶, 刘兴杰, 梁英, 等. 电工技术学报, DOI:10.19595/j.cnki.1000-6753.tces.231031.
17 Li Yasha, Guo Yujie, Xia Yu, et al.Material Reports, 2024, 38(23), 259(in Chinese).
李亚莎, 郭玉杰, 夏宇, 等. 材料导报, 2024, 38(23), 259.
18 Li Jin, Zhao Renyong, Du Boxue, et al.High Voltage Technology, 2020, 46(3), 772 (in Chinese).
李进, 赵仁勇, 杜伯学, 等. 高电压技术, 2020, 46(3), 772.
19 Li Changyun, Fan Yanqi.Chinese Journal of Electrical Engineering, DOI:10.13334/j.0258-8013.pcsee.232486 (in Chinese).
李长云, 范延岐. 中国电机工程学报, DOI:10.13334/j.0258-8013.pcsee.232486
20 Vaibhav M, Antti J K.Nanomaterials, 2022, 12(19), 3379.
21 Frisch M J, Trucks G W, Schlegel H B, et al.Gaussian 09. Revision B. 01, Gaussian Inc, Wallingford, 2009.
22 Liao Ruijin, Lu Yuncai, Yang Lijun, et al.Materials, 2006(6), 51 (in Chinese).
廖瑞金, 陆云才, 杨丽君, 等. 绝缘材料, 2006(6), 51.
23 Li Lili, Zhang Xiaohong, Wang Yulong, et al.High Voltage Technology, 2017, 43(9), 2866 (in Chinese).
李丽丽, 张晓虹, 王玉龙, 等. 高电压技术, 2017, 43(9), 2866.
24 Li Yasha, Qu Cong, Xia Yu, et al.High Voltage Technology, 2023, 49(12), 4890 (in Chinese).
李亚莎, 瞿聪, 夏宇, 等. 高电压技术, 2023, 49(12), 4890.
25 Lu T, Chen F W.Journal of Molecular Graphics and Modelling, 2012, 38, 314.
26 Zhou Yihan, Li Zhiyuan, Cheng Lu, et al.High Voltage Technology, DOI:10.13336/j.1003-6520.hve.20231673 (in Chinese).
周一涵, 李志元, 程璐, 等. 高电压技术, DOI:10.13336/j.1003-6520.hve.20231673.
27 Zhang J, Lu T.Physical Chemical Physics, 2021, 23, 20323.
28 Wang Kai, Zhao Xindong, Zheng Haifeng, et al.Journal of Electrotech-nology, 2024, 39(1), 34 (in Chinese).
王凯, 赵新东, 郑海峰, 等. 电工技术学报, 2024, 39(1), 34.
29 Lu T, Chen F W.Journal of Computational Chemistry, 2012, 33(5), 580.
30 Song Jiale, Zhang Tianyin, Zhu Guangyu, et al.Power Capacitor and Reactive Power Compensation, 2024, 45(1), 83 (in Chinese).
宋家乐, 张添胤, 朱光宇, 等. 电力电容器与无功补偿, 2024, 45(1), 83.
31 Li Shengtao, Huang Qifeng, Sun Jian, et al.Physics Letters, 2010, 59(1), 422 (in Chinese).
李盛涛, 黄奇峰, 孙健, 等. 物理学报, 2010, 59(1), 422.
[1] 武明生, 侯震, 郑硕鵾, 金志明, 张亚军. 玻纤/聚丙烯直接注射成型及工艺参数影响研究[J]. 材料导报, 2025, 39(6): 24010149-6.
[2] 陈阿青, 梁轻. Nb掺杂二氧化钛纳米管电子结构第一性原理计算[J]. 材料导报, 2025, 39(4): 23100185-6.
[3] 李歌, 马子然, 闾菲, 彭胜攀, 佟振伟. 基于机器学习高通量筛选二氧化碳还原电催化剂的研究进展[J]. 材料导报, 2025, 39(1): 23110048-13.
[4] 郑惠文, 金宏璋, 徐炎, 闫磊, 王行柱. 不同取代基对联苯二酰亚胺基空穴传输材料光电性能的影响[J]. 材料导报, 2024, 38(8): 22120082-8.
[5] 黎涛, 孟威明, 王丁丁, 卫春祥, 鲁红典. 多层结构聚丙烯酰胺水凝胶太阳能蒸发器的制备及性能[J]. 材料导报, 2024, 38(7): 22080085-5.
[6] 韩坤莹, 门汝佳, 郭美卿, 雷志鹏, 王心雨, 王轶飞, 石志杰. Al2O3@SiO2核壳纳米球添加对聚丙烯介电和空间电荷特性的影响[J]. 材料导报, 2024, 38(6): 22050200-7.
[7] 程雨竹, 马林建, 王磊, 耿汉生, 高康华, 谭仪忠. 冲击荷载作用下改性聚丙烯纤维高强珊瑚混凝土的动力特性[J]. 材料导报, 2024, 38(5): 23070191-7.
[8] 邱毅, 邹江峰, 马智炜, 罗强, 刘忠华, 陈洋, 代逸飞. 表面基团对Ti3C2Tx吸附NO性能影响的第一性原理研究[J]. 材料导报, 2024, 38(5): 22060163-5.
[9] 梁宁慧, 毛金旺, 游秀菲, 刘新荣, 周侃. 多尺度聚丙烯纤维混凝土弯曲疲劳寿命试验及数值模拟[J]. 材料导报, 2024, 38(4): 22040023-8.
[10] 李亚莎, 郭玉杰, 夏宇, 王佳敏, 晏欣悦, 陈俊璋. 外电场下三元乙丙橡胶微观特性及其对沿面放电影响的研究[J]. 材料导报, 2024, 38(23): 23070060-8.
[11] 李雪艳, 张蒙茜, 裴文乐, 李莎莎, 李鹏. 以聚丙烯酰胺为电解液添加剂稳定金属锌负极[J]. 材料导报, 2024, 38(15): 24020018-5.
[12] 李姝姝, 程鹏飞, 马应霞, 李广全. SEBS与β-NAs对PP的协同增韧作用及增韧机理研究[J]. 材料导报, 2024, 38(12): 23050100-8.
[13] 李天宇, 柴肇云, 杨泽前, 辛子朋, 孙浩程, 闫珂. 高岭石表面水化机理及电场弱化其吸附性能的分子模拟[J]. 材料导报, 2024, 38(1): 22050283-7.
[14] 郭静, 宋旭锋, 于艳敏, 高倩倩. 铁卟啉催化氧化邻、对硝基取代芳烃α-C-H键的密度泛函理论研究[J]. 材料导报, 2023, 37(8): 21110223-6.
[15] 宋丽红, 张敏刚, 曹翔宇, 郭锦, 闫晓燕. S-N掺杂聚乙二醇用于锂硫电池的第一性原理研究[J]. 材料导报, 2023, 37(3): 21030173-5.
[1] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[2] LIU Shuaiyang, WANG Aiqin, LYU Shijing, TIAN Hanwei. Interfacial Properties and Further Processing of Cu/Al Laminated Composite: a Review[J]. Materials Reports, 2018, 32(5): 828 -835 .
[3] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[4] CAO Xiuzhong, ZHAO Bing, HAN Xiuquan, HOU Hongliang, QU Haitao. Research on Deformation Mechanism of SiC Fiber Reinforced Titanium Matrix Composites Subjected to High Temperature Axial Tension[J]. Materials Reports, 2017, 31(8): 88 -93 .
[5] ZHANG Jiaqing, ZHANG Bosi, WANG Liufang, FAN Minghao, XIE Hui, LI Wei. The State of the Art of Combustion Behavior of Live Wires and Cables[J]. Materials Reports, 2017, 31(15): 1 -9 .
[6] LI Xueyun, WANG Hezhong. Optimization and Characterization of TEMPO-Mediated Oxidization of Nanochitin Whiskers[J]. Materials Reports, 2018, 32(10): 1597 -1601 .
[7] LI Beigang, WANG Min. High Efficient Adsorption of Dyes by Fe/CTS/AFA Composite[J]. Materials Reports, 2018, 32(10): 1606 -1611 .
[8] ZHAO Qingchen, WANG Jinlong, ZHANG Yuanliang, SHEN Yihong, LIU Shujie. Fatigue Behavior and Fatigue Life for FV520B-I at Different Loading Frequencies[J]. Materials Reports, 2018, 32(16): 2837 -2841 .
[9] ZHOU Chao, WANG Hui, OUYANG Liuzhang, ZHU Min. The State of the Art of Hydrogen Storage Materials for High-pressure Hybrid Hydrogen Vessel[J]. Materials Reports, 2019, 33(1): 117 -126 .
[10] WANG Huifen, LIU Gang, CAO Kangli, YANG Biqi, XU Jun, LAN Shaofei, ZHANG Lixin. Development Status of Carbon Nanotube Materials and Their Application Prospects in Spacecraft[J]. Materials Reports, 2019, 33(z1): 78 -83 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed