Please wait a minute...
材料导报  2025, Vol. 39 Issue (13): 24050169-5    https://doi.org/10.11896/cldb.24050169
  无机非金属及其复合材料 |
WO3复合Eu掺杂g-C3N4催化剂的制备及光催化降解氧氟沙星
张晓君, 韦慧珍, 王维雪, 孙墨杰*
东北电力大学化学工程学院,吉林 吉林 132012
Preparation of WO3 Composite Eu Doped g-C3N4 Catalysts and Photocatalytic Degradation of Ofloxacin
ZHANG Xiaojun, WEI Huizhen, WANG Weixue, SUN Mojie*
School of Chemical Engineering, Northeast Electric Power University, Jilin 132012, Jilin, China
下载:  全 文 ( PDF ) ( 16027KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 光催化技术具有操作简单、价格低廉与无二次污染等优点,在处理抗生素废水中表现优异。WO3是有强氧化能力的金属氧化物,且不属于贵金属氧化物,无毒无害。Eu具有独特的4f电子构型,能作为电子捕获中心,有较强的电子捕获能力。使用复合金属氧化物WO3与掺杂稀土元素Eu两种改性手段对g-C3N4进行修饰,制备不同复合比例的WO3/Eu/g-C3N4新型催化剂,构建Z型异质结。将制备的样品用于光催化降解氧氟沙星溶液,3% WO3/Eu/g-C3N4催化剂表现出最佳的光催化活性,光照50 min后降解率达到80.71%。经过四次稳定循环测试,催化剂保持较高的光催化活性,说明其具有良好的循环稳定性。通过自由基捕获实验发现主要活性物种是·O2-和h+,并提出光催化降解氧氟沙星的机理。本研究可为优化催化剂的光催化活性及抗生素废水处理应用提供一种新思路。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张晓君
韦慧珍
王维雪
孙墨杰
关键词:  类石墨相氮化碳(g-C3N4)  稀土元素  三氧化钨  氧氟沙星  光催化    
Abstract: Photocatalysis technology possesses the advantages of facile operation, cost-effectiveness, and absence of secondary pollution, exhibiting remarkable performance in the treatment of antibiotic wastewater. WO3 is a metal oxide with robust oxidation capacity that is non-precious, non-toxic, and harmless. Eu has its unique 4f electron configuration which enables it to serve as an electron capture center with strong electron capturing ability. In this work, g-C3N4 was modified by incorporating WO3 and Eu. WO3/Eu/g-C3N4 catalysts with varying composite ratios were prepared to construct Z-type heterojunctions. The prepared samples were employed for photocatalytic degradation of ofloxacin solution. The catalysts consisting of 3% WO3/Eu/g-C3N4 exhibited the best photocatalytic activity with a degradation rate of 80.71% after 50 min of illumination. After four stabilization cycle tests, the catalysts remained excellent photocatalytic activity indicating their good cycling stability. Free radical trapping experiments revealed that ·O2- and h+ were identified as the main active species, and a mechanism for photocatalytic degradation ofloxacin was proposed. This study provides novel insights into optimizing photocatalytic activity of the catalysts and their application in antibiotic wastewater treatment.
Key words:  graphite carbon nitride (g-C3N4)    rare earth element    tungsten trioxide    ofloxacin    photocatalysis
出版日期:  2025-07-10      发布日期:  2025-07-21
ZTFLH:  O643  
基金资助: 国家自然科学基金青年基金(22306024);吉林省科技发展计划项目 (20210201058GX)
通讯作者:  *孙墨杰,博士,教授,硕士研究生导师。研究方向为化学分析测试技术与仪器、水处理技术等。smoj@neepu.edu.cn   
作者简介:  张晓君,东北电力大学高级实验师、硕士研究生导师。研究方向为功能材料的制备及应用。
引用本文:    
张晓君, 韦慧珍, 王维雪, 孙墨杰. WO3复合Eu掺杂g-C3N4催化剂的制备及光催化降解氧氟沙星[J]. 材料导报, 2025, 39(13): 24050169-5.
ZHANG Xiaojun, WEI Huizhen, WANG Weixue, SUN Mojie. Preparation of WO3 Composite Eu Doped g-C3N4 Catalysts and Photocatalytic Degradation of Ofloxacin. Materials Reports, 2025, 39(13): 24050169-5.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24050169  或          https://www.mater-rep.com/CN/Y2025/V39/I13/24050169
1 Hirsch R, Ternes T, Haberer K, et al.Science of Total Environment, 2020, 321, 128523.
2 Wang L, Ben W, Li Y, et al.Chemosphere, 2018, 206, 184.
3 Ribeiro A R, Nunes O C, Pereira M F R, et al.Environmental International, 2015, 75, 33.
4 Chen H, Zeng X, Zhou Y, et al.Journal of Hazardous Materials, 2020, 394, 122570.
5 Chen M, Bai R, Jin P, et al.Journal of Alloys and Compounds, 2021, 869, 159296.
6 Yuan A L, Lei H, Xi F N, et al.Journal of Colloid and Interface Science, 2019, 548, 56.
7 Xian H C, Feng J L, Yan G.Applied Surface Science, 2022, 576, 346.
8 Zhu Z G, Xia H W, Li H, et al.Inorganics, 2022, 10, 131.
9 Liu S Z, Sun H Q, Ang H M, et al.Journal of Colloid and Interface Science, 2016, 476, 193.
10 Zhang W J, Xu D T, Wang F J, et al.Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2021, 51, 653.
11 Huang H W, Liu C Y, Ou H L, et al.Applied Surface Science, 2019, 470, 1101.
12 Huang L Y, Xu H, Li Y P, et al.Dalton Transactions, 2013, 42(16), 8606.
13 Zhang K, Jin Y R, Guo Y X, et al.Chemistry Select, 2021, 6(2), 5719.
14 Tang J Y, Guo R T, Pan W G, et al.Applied Surface Science, 2018, 10(8), 1432.
15 Li Z L, Jin C Y, Lv C M, et al.Materials Chemistry and Physics, 2019, 231(4), 121829.
16 Parasuraman B, Kandasamy B, Vasudevan V, et al.Environmental Science and Pollution Research, 2024, 31, 46591.
17 Zhou D F, Qiu C Q.Chemical Physics Letters, 2022, 48(2), 202.
18 Qian H R, Lu J M, Ge L, et al.Journal of Electronic Materals, 2023, 52(6), 3947.
19 Li G, Wang R, Wang B, et al.Applied Surface Science, 2020, 517, 346.
20 Xu Y S, Liang Y H, Yu A Z, et al.Ceramics International, 2022, 48(17), 24677.
21 Hakimi-Tehrani M J, Hassanzadeh-Tabrizi S A, Koupaei N, et al.Journal of Sol-gel Science and Technology. 2023, 105(1), 212.
22 Kun W, Dong D, Chen S Y, et al.Journal of Hazardous Materials, 2020, 382, 121027.
23 Chen M F, Zhao X M, Li Y F, et al.Chemical Engineering Journal, 2020, 385(1), 123905.
24 Tong H, Ouang S, Bi Y, et al.Chemical Reviews, 2019, 12(3), 2610.
25 Zhao Q R, Liu S N, Chen S Y, et al.Chemical Physics Letters, 2022, 805, 139908.
26 Kowalkinska M, Borzyszkowska A F, Grzegorska A, et al.Materials, 2022, 15(2), 633.
[1] 阳东胤, 赵媛, 燕红. 碳量子点的制备、性质及在光催化领域中的应用研究进展[J]. 材料导报, 2025, 39(8): 24060102-13.
[2] 赵娣, 刘洪燕, 王树军, 孙欣语, 张紫璇, 齐学宇, 刘子帆. Z型异质结复合薄膜UIO-66-NH2/Ag/Ag3PO4/Ni的可见光催化性能及机理[J]. 材料导报, 2025, 39(8): 24030178-6.
[3] 杨明, 孙杰, 王金泽, 崔占朋, 吴敏, 杜伟. 金属有机框架及碳基材料在室内有机污染物控制中的研究进展[J]. 材料导报, 2025, 39(4): 24010153-8.
[4] 程东海, 张夫庭, 陶玄宇, 余超, 龚浩, 李海涛, 王德, 熊震宇. 稀土元素对钛合金激光焊接头组织及性能的影响[J]. 材料导报, 2025, 39(3): 23060020-5.
[5] 苏子龙, 尹立孟, 陈玉华, 张鹤鹤, 张龙, 张丽萍. 稀土元素对微电子封装互连材料组织与性能的影响[J]. 材料导报, 2025, 39(12): 24030246-9.
[6] 何静娴, 刘建霞, 缑浩. 光热催化产氢技术的进展与讨论[J]. 材料导报, 2025, 39(11): 24010063-8.
[7] 于慧敏, 郭少红, 贾美林, 贾晶春, 常迎. 硫族半导体催化剂用于高效光催化CO2还原的研究进展[J]. 材料导报, 2025, 39(10): 24040169-9.
[8] 孔德茹, 刘靖, 杨晓林, 孙冬兰, 张进康. 溶胶-凝胶-燃烧法中双功能络合剂对掺铝氧化锌性能影响的研究[J]. 材料导报, 2025, 39(1): 23100131-7.
[9] 王海涛, 施宝旭, 赵晓旭, 常娜. 高效降解盐酸四环素的CdS/BiOCl复合光催化剂的制备及性能[J]. 材料导报, 2024, 38(6): 22060180-8.
[10] 刘月琴, 王海涛, 郭建峰, 赵晓旭, 常娜. 不同形貌g-C3N4光催化剂的制备及性能[J]. 材料导报, 2024, 38(4): 22080014-7.
[11] 李冠琼, 梁海欧, 李春萍, 白杰. ZnIn2S4基光催化剂的制备及改性研究进展[J]. 材料导报, 2024, 38(3): 22040272-6.
[12] 贾宇盟, 史忠祥, 王晶, 李翔. Sm3+掺杂LaOF荧光粉的制备及光学性能[J]. 材料导报, 2024, 38(3): 22100249-7.
[13] 林青, 黎水平, 缪志鹏, 丁忆, 梁栋, 王昭, 张小娟. Au@α-Fe2O3纳米棒的制备及光催化性能[J]. 材料导报, 2024, 38(3): 22050040-6.
[14] 朱艳, 刘海龙, 贾仕奎, 李云峰, 首浩. Fe3O4/g-C3N4复合异质结的构建及紫外光降解罗丹明B[J]. 材料导报, 2024, 38(23): 23080020-7.
[15] 徐杨, 刘成宝, 郑磊之, 陈丰, 钱君超, 邱永斌, 孟宪荣, 陈志刚. 高结晶度g-C3N4在光催化领域的研究进展[J]. 材料导报, 2024, 38(21): 23060180-13.
[1] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[2] LIU Shuaiyang, WANG Aiqin, LYU Shijing, TIAN Hanwei. Interfacial Properties and Further Processing of Cu/Al Laminated Composite: a Review[J]. Materials Reports, 2018, 32(5): 828 -835 .
[3] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[4] CAO Xiuzhong, ZHAO Bing, HAN Xiuquan, HOU Hongliang, QU Haitao. Research on Deformation Mechanism of SiC Fiber Reinforced Titanium Matrix Composites Subjected to High Temperature Axial Tension[J]. Materials Reports, 2017, 31(8): 88 -93 .
[5] ZHANG Jiaqing, ZHANG Bosi, WANG Liufang, FAN Minghao, XIE Hui, LI Wei. The State of the Art of Combustion Behavior of Live Wires and Cables[J]. Materials Reports, 2017, 31(15): 1 -9 .
[6] LI Xueyun, WANG Hezhong. Optimization and Characterization of TEMPO-Mediated Oxidization of Nanochitin Whiskers[J]. Materials Reports, 2018, 32(10): 1597 -1601 .
[7] LI Beigang, WANG Min. High Efficient Adsorption of Dyes by Fe/CTS/AFA Composite[J]. Materials Reports, 2018, 32(10): 1606 -1611 .
[8] ZHAO Qingchen, WANG Jinlong, ZHANG Yuanliang, SHEN Yihong, LIU Shujie. Fatigue Behavior and Fatigue Life for FV520B-I at Different Loading Frequencies[J]. Materials Reports, 2018, 32(16): 2837 -2841 .
[9] ZHOU Chao, WANG Hui, OUYANG Liuzhang, ZHU Min. The State of the Art of Hydrogen Storage Materials for High-pressure Hybrid Hydrogen Vessel[J]. Materials Reports, 2019, 33(1): 117 -126 .
[10] WANG Huifen, LIU Gang, CAO Kangli, YANG Biqi, XU Jun, LAN Shaofei, ZHANG Lixin. Development Status of Carbon Nanotube Materials and Their Application Prospects in Spacecraft[J]. Materials Reports, 2019, 33(z1): 78 -83 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed