Research Progress on Iridium-based Catalyst Design for Hydrogen Production via Proton Exchange Membrane Water Electrolysis
LI Yinghua1,2, PI Xiaolin3, LI Hongpeng3, TIAN Yiran3, WANG Yukun3, ZHANG Yi2, ZHANG Zhenqiang3,TANG Zhenyan3, XU Chao4, YAO Chang3,*
1 Kunming Institute of Precious Metals, State Key Laboratory of New Technologies for Comprehensive Utilization of Rare and Precious Metals, Kunming 650106, China 2 School of Chemistry and Chemical Engineering, Kunming University, Kunming 650106, China 3 State Key Laboratory of New Technology for Comprehensive Utilization of Rare and Precious Metals, Kunming Institute of Precious Metals, Kunming 650106, China 4 School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
Abstract: Proton exchange membrane (PEM) water electrolysis technology plays a significant role in overcoming the challenges of intermittent rene-wable energy utilization and reducing carbon emissions. Due to the harsh reaction conditions and the slow four-electron transfer process involved in the oxygen evolution reaction (OER), precious metal iridium (Ir), with its exceptional corrosion resistance, has become an ideal choice for acidic water electrolysis. However, the scarcityand high cost of Ir resources severely restrict their commercialization and large-scale application. Therefore, rational design and efficient preparation of Ir-based catalysts are crucial for hydrogen production via water electrolysis. This review introduced recent advances in Ir-based catalysts for hydrogen production in acidic media, focusing on three synthesis strategies:the synthesis of Ir-based catalysts with special morphologies, the alloying strategy of Ir with other metals, and the modification strategy of iridium oxide. Additionally, it outlined future directions for the development of PEM water electrolysis OER Ir-based catalysts in terms of material modification. Through a comprehensive analysis of existing research findings, this work can provide a theoretical foundation and practical guidance for future investigations.
李赢华, 皮晓琳, 李鸿鹏, 田乙然, 王钰锟, 张毅, 张振强, 唐振艳, 徐超, 姚苌. 质子交换膜水电解制氢反应:铱基催化剂设计研究进展[J]. 材料导报, 2025, 39(23): 24110228-13.
LI Yinghua, PI Xiaolin, LI Hongpeng, TIAN Yiran, WANG Yukun, ZHANG Yi, ZHANG Zhenqiang,TANG Zhenyan, XU Chao, YAO Chang. Research Progress on Iridium-based Catalyst Design for Hydrogen Production via Proton Exchange Membrane Water Electrolysis. Materials Reports, 2025, 39(23): 24110228-13.
1 He G N, Mallapragada D S, Bose A, et al. Energy & Environmental Science, 2021, 14(9), 4635. 2 Holladay J D, Hu J, King D L, et al. Catalysis Today, 2009, 139(4), 244. 3 Yu C J. Journal of Catalysis, 2018, 39(3), 390(in Chinese). 俞迟军. 催化学报, 2018, 39(3), 390. 4 Zhou L, Lu S Y, Guo S J. Sus Mat, 2021, 1(2), 194. 5 Tang J, Liu X, Xiong X, et al. Advanced Materials, 2024, 36(41), 2407394. 6 An L L, Zhu J, Yang J H, et al. Nano Materials Science, DOI:10. 1016/j. nanoms. 2024. 01. 011. 7 Zhang L S, Bai J, Zhang S H, et al. ACS Nano, 2024, 18(33), 22095. 8 Wang J W, Cai L J, Yu Z P, et al. Journal of Materials Chemistry A, DOI:10. 1039/d4ta06592a. 9 Jiao J X, Chen D, Zhao H Y, et al. Science China Chemistry, 2024, 68(6), 2217. 10 Cherevko S, Geiger S, Kasian O, et al. Catalysis Today, 2016, 262, 170. 11 Pedersen A F, Escudero-Escribano M, Sebok B, et al. The Journal of Physical Chemistry B, 2017, 122(2), 878. 12 Jiang B, Guo Y N, Kim J, et al. Journal of the American Chemical Society, 2018, 140(39), 12434. 13 Zhang N, Du J Y, Zhou N, et al. Chinese Journal of Catalysis, 2023, 53, 134. 14 Kost M, Kornherr M, Zehetmaier P, et al. Small, 2024, 20(42), 2404118. 15 Guo J W, Mao F X, Fang S R, et al. Journal of Materials Chemistry A, 2024, 12(40), 27280. 16 Zhu Y L, Fan C Y, Shi A W, et al. Shandong Chemical Industry, 2024, 53(9), 98(in Chinese). 主余亮, 范朝阳, 史爱文, 等. 山东化工, 2024, 53(9), 98. 17 Hao S Y, Sheng H Y, Liu M, et al. Nature Nanotechnology, 2021, 16(12), 1371. 18 Xu J, Jin H Y, Lu T, et al. Science Advances, 2023, 9(25), eadh1718. 19 Yao C, Li W H, Ge X H, et al. Chem Cat Chem, 2024, 16(16), e202400027. 20 Yue D, Feng T L, Zhu Z C, et al. ACS Catalysis, 2024, 14(5), 3006. 21 Pittkowski R K, Punke S, Anker A S, et al. Journal of the American Chemical Society, 2024, 146(40), 27517. 22 van der Merwe M, Wibowo R E, Jimenez C E, et al. ACS Catalysis, 2024, 14(22), 16759. 23 Xia J Z, Cao R, Wu Q. Chemistry Bulletin, 2022, 85(10), 1224(in Chinese). 夏杰桢, 曹蓉, 吴琪. 化学通报, 2022, 85(10), 1224. 24 Fan G L, Sun H M, Cheng F Y, et al. Chinese Science:Chemistry, 2019, 49 (5), 741(in Chinese). 樊桂兰, 孙洪明, 程方益, 等. 中国科学:化学, 2019, 49(5), 741. 25 Gao L K, Cui X, Sewell C D, et al. Chemical Society Reviews, 2021, 50(15), 8428. 26 Liu G, Chen M, Yang Y J, et al. Energy Chemical, 2024, 45 (5), 1(in Chinese). 刘岗, 陈满, 杨应举, 等. 能源化工, 2024, 45(5), 1. 27 Wang N, Ou P F, Miao R K, et al. Journal of the American Chemical Society, 2023, 145(14), 7829. 28 Li W Q, Bu Y F, Ge X L, et al. Chem Sus Chem, 2024, 17(13), e202400295. 29 Cao J, Mou T, Mei B B, et al. Angewandte Chemie International Edition, 2023, 62(43), e202310973. 30 Wang Q L, Xu C Q, Liu W, et al. Nature Communications, 2020, 11(1), 4246. 31 Yeo K R, Lee K S, Kim H, et al. Energy & Environmental Science, 2022, 15(8), 3449. 32 Xie Y H, Feng Y M, Pan S Y, et al. Advanced Functional Materials, 2024, 34(41), 2406351. 33 Zhu J W, Xie M H, Chen Z T, et al. Advanced Energy Materials, 2020, 10(16), 1904114. 34 Zhang Z Q, Xia Y, Ye M, et al. International Journal of Hydrogen Energy, 2022, 47(27), 13371. 35 Cai C, Wang M Y, Han S B, et al. ACS Catalysis, 2020, 11(1), 123. 36 Yan T Q, Chen S Y, Sun W D, et al. ACS Applied Materials & Interfaces, 2023, 15(5), 6912. 37 Parizad M, Wong A P, Reber A C, et al. ACS Catalysis, 2020, 10(22), 13352. 38 Tackett B M, Sheng W C, Kattel S, et al. ACS Catalysis, 2018, 8(3), 2615. 39 Shan J Q, Guo C X, Zhu Y H, et al. Chem, 2019, 5(2), 445. 40 Wang H M, Chen Z N, Wang Y Y, et al. National Science Review, 2024, 11(4), nwae056. 41 Zheng Y, Zhang F R, Wang G L, et al. Journal of Power Sources, 2022, 528, 231189. 42 Kim K S, Park S A, Jung H D, et al. ACS Catalysis, 2022, 12(11), 6334. 43 Xu J B, Chang L, Wei Y P, et al. ACS Nano, 2024, 18(42), 29140. 44 Ding H, Su C J, Wu J B, et al. Journal of the American Chemical Society, 2024, 146(11), 7858. 45 Wang C, Sui Y M, Xiao G J, et al. Journal of Materials Chemistry A, 2015, 3(39), 19669. 46 Kwon T, Hwang H, Sa Y J, et al. Advanced Functional Materials, 2017, 27(7), 1604688. 47 Han W W, Qian Y, Zhang F, et al. Chemical Engineering Journal, 2023, 473, 145353. 48 Zhu J W, Chen Z T, Xie M H, et al. Angewandte Chemie International Edition, 2019, 58(22), 7244. 49 Wang S A, Yang S, Wei Z Q, et al. Journal of Materials Chemistry A, 2022, 10(48), 25556. 50 Xu J Y, Lian Z, Wei B, et al. ACS Catalysis, 2020, 10(6), 3571. 51 Liu J L, Xiao J X, Wang Z Y, et al. ACS Catalysis, 2021, 11(9), 5386. 52 Li C, Zhang W, Cao Y Y, et al. Advanced Science, 2024, 11(28), 2401780. 53 Chen Y X, Meng J, Xu M, et al. Advanced Functional Materials, 2024, 2413474. 54 Chueh L Y, Kuo C H, Yang R H, et al. Chemical Engineering Journal, 2023, 464, 142613. 55 Liu S H, Tan H, Huang Y C, et al. Advanced Materials, 2023, 35(42), 2305659. 56 Pi Y C, Shao Q, Wang P T, et al. Advanced Functional Materials, 2017, 27(27), 1700886. 57 Pi Y C, Shao Q, Zhu X, et al. ACS Nano, 2018, 12(7), 7371. 58 Chang Y N, Lu X Y, Wang S H, et al. Small, 2024, 20(29), 2311763. 59 Zhu H, Wang Y J, Jiang Z Q, et al. Advanced Energy Materials, 2024, 14(14), 2303987. 60 Shi Q R, Zhu C Z, Zhong H, et al. ACS Energy Letters, 2018, 3(9), 2038. 61 Lv F, Feng J R, Wang K, et al. ACS Central Science, 2018, 4(9), 1244. 62 Zhang J L, Cao X M, Jiang Y F, et al. Chemical Science, 2022, 13(41), 12114. 63 Yang X, Wu Z H, Xing Z Y, et al. Small, 2023, 19(27), 2208261. 64 Jiang Y, Mao Y N, Jiang Y M, et al. Chemical Engineering Journal, 2022, 450, 137909. 65 Xiao M Y, Xu W L, Li R C, et al. Journal of Energy Chemistry, 2024, 92, 579. 66 Zhang T, Liao S A, Dai L X, et al. Science China Materials, 2018, 61(7), 926. 67 Yang A Z, Su K Y, Wang S Z, et al. Applied Surface Science, 2020, 510, 145408. 68 Guo H Y, Fang Z W, Li H, et al. ACS Nano, 2019, 13(11), 13225. 69 Hu H, Kazim F M D, Ye Z H, et al. Journal of Materials Chemistry A, 2020, 8(38), 20168. 70 You H H, Wang Y Y, Sun F F, et al. ACS Materials Letters, 2023, 5(11), 2887. 71 Zhang S, Zhang X, Shi X R, et al. Journal of Energy Chemistry, 2020, 49, 166. 72 Jiang P, Huang H, Diao J F, et al. Applied Catalysis B: Environmental, 2019, 258, 117965. 73 Zhao Y, Luo M, Chu S F, et al. Nano Energy, 2019, 59, 146. 74 Qiao Y J, Luo M, Cai L B, et al. Small, 2023, 20(2), 2305479. 75 Sun J Y, Qin Y, Niu X P, et al. Journal of Colloid and Interface Science, 2024, 661, 249. 76 Xiong X X, Tang J L, Ji Y, et al. Advanced Energy Materials, 2024, 14(20), 2304479. 77 Zhou P F, Liu D, Chen Y Y, et al. Journal of Materials Science & Technology, 2022, 109, 267. 78 Sun X Y, Sun Y G. Chemical Society Reviews, 2024, 53(9), 4400. 79 Liu H, Qin H Y, Kang J L, et al. Chemical Engineering Journal, 2022, 435, 134898. 80 Wang H Y, Wei R, Li X M, et al. Journal of Materials Science & Technology, 2021, 68, 191. 81 Tang J, Xu J L, Ye Z G, et al. Journal of Materials Science & Technology, 2021, 79, 171. 82 Kwon J, Sun S, Choi S, et al. Advanced Materials, 2023, 35(26), 2300091. 83 Jin Z Y, Lv J, Jia H L, et al. Small, 2019, 15(47), 1904180. 84 Yao L P, Zhang F R, Yang S, et al. Advanced Materials, 2024, 36(25), 2314049. 85 Hu C, Yue K H, Han J J, et al. Science Advances, 2023, 9(37), eadf9144. 86 Jia R N, Xia M H, Tang L, et al. ACS Catalysis, 2022, 12(21), 13513. 87 Hong S, Ham K, Hwang J, et al. Advanced Functional Materials, 2022, 33(1), 2209543. 88 Lu Z X, Shi Y, Shen L S, et al. International Journal of Hydrogen Energy, 2023, 48(21), 7549. 89 Yang Y F, Zhou T X, Zeng Z, et al. Journal of Colloid and Interface Science, 2024, 659, 191. 90 He J, Zhou X, Xu P, et al. Advanced Energy Materials, 2021, 11(48), 2102883. 91 Qin K Y, Yu H, Zhu W X, et al. Advanced Functional Materials, 2024, 2402226. 92 Zhu W X, Song X C, Liao F, et al. Nature Communications, 2023, 14(1), 5365. 93 Zhang F F, Cheng C Q, Wang J Q, et al. ACS Energy Letters, 2021, 1588. 94 Wang Y N, Zhang M C, Kang Z Y, et al. Nature Communications, 2023, 14(1), 5119. 95 Esterhuizen J A, Mathur A, Goldsmith B R, et al. Journal of the American Chemical Society, 2024, 146(8), 5511. 96 Liang X, Shi L, Cao R, et al. Advanced Materials, 2020, 32(34), 2001430. 97 You M S, Xu Y, He B B, et al. Applied Catalysis B: Environmental, 2022, 315, 121579. 98 Seitz L C, Dickens C F, Nishio K, et al. Science, 2016, 353(6303), 1011. 99 Yang L, Yu G T, Ai X, et al. Nature Communications, 2018, 9(1), 5236. 100 Zhao L, Tao Z T, You M S, et al. Advanced Science, 2024, 11(24), 2309750. 101 Huang Y L, Xiao H W, He B B, et al. Journal of Energy Chemistry, 2024, 99, 325. 102 Chen Y B, Li H Y, Wang J X, et al. Nature Communications, 2019, 10(1), 572. 103 Vos J G, Liu Z C, Speck F D, et al. ACS Catalysis, 2019, 9(9), 8561. 104 Zhang Q, Chen H, Yang L, et al. Chinese Journal of Catalysis, 2022, 43(3), 885. 105 Gao R Q, Zhang Q, Chen H, et al. Journal of Energy Chemistry, 2020, 47, 291. 106 Retuerto M, Pascual L, Torrero J, et al. Nature Communications, 2022, 13(1), 7935. 107 Ganguly S, Datta R, Basera P, et al. ACS Sustainable Chemistry & Engineering, 2023, 12(2), 849. 108 Zhu L, Ma C L, Wang Z Q, et al. Applied Surface Science, 2022, 576, 151840. 109 Sun W, Liu J Y, Gong X Q, et al. Scientific Reports, 2016, 6(1), 38429. 110 Pittkowski R K, Abbott D F, Nebel R, et al. Electrochimica Acta, 2021, 366, 137327. 111 Shang C Y, Cao C, Yu D Y, et al. Advanced Materials, 2018, 31(6), 1805104.