Please wait a minute...
材料导报  2025, Vol. 39 Issue (20): 25070127-8    https://doi.org/10.11896/cldb.25070127
  无机非金属及其复合材料 |
稀土元素掺杂在提升热电材料性能中的研究进展
王晴晴1,*, 李地2,*, 周家峰1, 孟维利1, 朱安康1, 邵静1
1 蚌埠学院数理学院,安徽 蚌埠 233030
2 中国科学院固体物理研究所,合肥 230031
Research Progress on Rare Earth Element Doping in Improving the Performance of Thermoelectric Materials
WANG Qingqing1,*, LI Di2,*, ZHOU Jiafeng1, MENG Weili1, ZHU Ankang1, SHAO Jing1
1 School of Mathematics and Physics, Bengbu University, Bengbu 233030, Anhui, China
2 Institute of Solid State Physics, University of Chinese Academy of Sciences, Hefei 230031, China
下载:  全 文 ( PDF ) ( 8743KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 热电材料是一种可实现热能与电能相互转换的新能源材料,具有广阔的应用前景。表征热电性能的热电优值(ZT)受相互耦合的电导率、热导率和Seebeck系数的限制,它们的大小又取决于材料的内部微观结构、载流子传输特性、声子散射情况等,大量研究表明利用微量元素掺杂是提升热电性能的一种有效途径。本文对稀土元素掺杂在提升Mg3Sb2基Zintl相、CoSb3基方钴矿结构、BiCuSeO基氧化物、MgAgSb基Half-Heusler合金、SrTiO3基钙钛矿结构和Zn4Sb3基热电体系等各类热电材料性能中的应用及其微观机制进行综述,发现稀土元素由于具有特殊的4f轨道电子,有可能实现载流子浓度优化、强声子散射、结构调控、电声解耦、能带收敛等,最终可实现热电优值的提高,为热电材料的深入研究和实际应用提供一定的理论支持。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王晴晴
李地
周家峰
孟维利
朱安康
邵静
关键词:  稀土掺杂  热电材料  电输运特性  热传输特性    
Abstract: Thermoelectric materials are new energy materials capable of converting thermal energy into electrical energy, offering a wide array of promi-sing applications. Thermoelectric performance is characterized by the figure of merit (ZT), which is inherently limited by the interdependent electrical conductivity, thermal conductivity, and Seebeck coefficient. Each of these properties is influenced by the internal microstructure of the material, the transport behavior of charge carriers, and phonon scattering. Numerous studies have demonstrated that trace element doping is an effective strategy for enhancing the thermoelectric performance. This article reviews the applications and microscopic mechanisms of doping with rare earth elements to improve the properties of various thermoelectric materials, including Mg3Sb2-based Zintl phases, CoSb3-based skutterudites, BiCuSeO-based oxides, MgAgSb-based Half-Heusler alloys, SrTiO3-based perovskites, and Zn4Sb3-based thermoelectric systems. Owing to their distinctive 4f orbital electrons, rare earth elements enable carrier concentration optimization, strong phonon scattering, structural regulation, electroacoustic decoupling, and band convergence. These mechanisms collectively contribute to enhanced thermoelectric properties, thereby providing a theoretical foundation for further research and practical applications in the field.
Key words:  rare earth doping    thermoelectric material    electrical transport characteristic    heat transfer characteristic
发布日期:  2025-10-27
ZTFLH:  O469  
基金资助: 安徽省质量工程项目(2023sdxx097);安徽省教育厅自然科学基金(2024AH051174);蚌埠学院高层次人才项目(2024YYX71QD)
通讯作者:  *王晴晴,博士,蚌埠学院新能源材料与器件专业的专任教师、副教授。目前主要研究领域为热电材料和激光材料。wqq1101@bbc.edu.cn
李地,博士,中国科学院固体物理所硕士研究生导师、项目研究员。研究方向为热电材料和超导材料。lidi@issp.ac.cn   
引用本文:    
王晴晴, 李地, 周家峰, 孟维利, 朱安康, 邵静. 稀土元素掺杂在提升热电材料性能中的研究进展[J]. 材料导报, 2025, 39(20): 25070127-8.
WANG Qingqing, LI Di, ZHOU Jiafeng, MENG Weili, ZHU Ankang, SHAO Jing. Research Progress on Rare Earth Element Doping in Improving the Performance of Thermoelectric Materials. Materials Reports, 2025, 39(20): 25070127-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.25070127  或          https://www.mater-rep.com/CN/Y2025/V39/I20/25070127
1 Ba Q, Liu Z Y, Li Z, et al. Materials Reports, 2025, 39(15), 24050140 (in Chinese).
巴倩, 刘志愿, 李周, 等.材料导报, 2025, 39(15), 24050140.
2 Hao M. Optimizing thermoelectric performance of AgSbTe2 based materials by band and interface engineering. Master’s Thesis, Henan University, China, 2024(in Chinese).
郝敏. 能带及界面工程优化AgSbTe2基材料的热电性能. 硕士学位论文, 河南大学, 2024.
3 Shenoy U S, Goutham K D, Bhat D K. Materials Advances, 2022, 3(14), 5941.
4 Pei Y, Shi X, Lalonde A, et al. Nature, 2011, 473(7345), 66.
5 Hong M, Chen Z G, Yang L, et al. Advanced Materials, 2018, 30(11), 1705942.
6 Wu L, Li X, Wang S, et al. NPG Asia Materials, 2017, 9(1), 343.
7 Tan X, Liu Y, Liu R, et al. Advanced Energy Materials, 2019, 9(31), 1900354.
8 Singh N K, Bathula S, Gahtori B, et al. Journal of Alloys and Compounds, 2016, 668, 152.
9 Pei Y, May A F, Snyder G J. Advanced Energy Materials, 2011, 1(2), 291.
10 Jang H, Park J H, Lee H S, et al. Advanced Science, 2021, 8(20), 2100895.
11 Tan G, Zhao L D, Shi F, et al. Journal of the American Chemical Society, 2014, 136(19), 7006.
12 Zhang Q. Investigation on the thermoelectric performance optimization and devices fabrication of tellurides. Ph. D. Thesis, University of Chinese Academy of Sciences, China, 2023(in Chinese).
张强. 碲化物热电材料性能优化与器件制备研究. 博士学位论文, 中国科学院大学, 2023.
13 Snyder G J, Toberer E S. Nature Materials, 2008, 7(2), 105.
14 Pei Y, Shi X, Lalonde A, et al. Nature, 2011, 473(7345), 66.
15 Fu T, Yue X, Wu H, et al. Journal of Materiomics, 2016, 2(2), 141.
16 Zhu T, Fu C, Xie H, et al. Advanced Energy Materials, 2015, 5(19), 1500588.
17 Tang Q, Jiang B, Wang K, et al. Joule, 2024, 8(6), 1641.
18 Zhao L D, Lo S H, Zhang Y. et al. Nature, 2014, 508(7496), 373.
19 Zhong B, Zhang Y, Li W, et al. Applied Physics Letters, 2014, 105(12), 123902.
20 Liu H, Yuan X, Lu P, et al. Advanced Materials, 2013, 25(45), 6607.
21 Zhang Q, Yuan M, Pang K, et al. Advanced Materials, 2023, 35(21), 2300338.
22 Yang J, Zhang H, Hu N, et al. Materials Today Nano, 2025, 29, 100590.
23 Li H, Liu Y, Liu S, et al. ACS Applied Materials & Interfaces, 2024, 16(14), 17598.
24 Li H, Zhang H, Zhu J, et al. Journal of Colloid and Interface Science, 2025, 698, 138057.
25 Xu C, Yang S, Li P, et al. Composites Communications, 2022, 32, 101179.
26 Liu S, Li H, Li P, et al. CCS Chemistry, 2021, 3(10), 2547.
27 Wang D, Ding J, Ma Y, et al. Nature, 2024, 632(8025), 528.
28 Chen X, Wu H, Cui J, et al. Nano Energy, 2018, 52, 246.
29 Bhardwaj A, Misra D K. RSC Advances, 2014, 4(65), 34552.
30 Li J W, Han Z, Yu J, et al. Nature Communications, 2023, 14(1), 7428.
31 Huang S, Wang Z, Yu H, et al. Nano Energy, 2019, 62, 212.
32 Liu H. Influence of rare earth element doping on the properties of n-type Mg3Sb2-based thermoelectric materials. Master’s Thesis, Xihua University, China, 2024(in Chinese).
刘行. 稀土元素掺杂对n型Mg3Sb2基热电材料性能的影响研究. 硕士学位论文, 西华大学, 2024.
33 Kang Z P. Modulating thermoelectric properties of Mg3Sb2 based materials by optimizing carrier concentration and scattering mechanism. Master’s Thesis, Taiyuan University of Technology, China, 2023(in Chinese).
康泽鹏. 优化载流子浓度与散射机制调控Mg3Sb2基材料的热电性能. 硕士学位论文, 太原理工大学, 2023.
34 Li J. Research on thermoelectric transport properties of n-type Mg3Sb2-based Zintl system based on defect engineering and strain engineering. Ph. D. Thesis, China University of Petroleum, China, 2021(in Chinese).
李娟. N型Mg3Sb2基Zintl相体系基于缺陷工程和应变工程的热电输运性质研究. 博士学位论文, 中国石油大学, 2021.
35 Li J. Thermoelectric properties of p-type Mg3Sb2-based alloys. Master’s Thesis, Harbin Institute of Technology, China, 2024(in Chinese).
李娟. P型Mg3Sb2基合金的热电性能研究. 硕士学位论文, 哈尔滨工业大学, 2024.
36 Liu Z Y, Zhu J L, Tong X, et al. Journal of Advanced Ceramics, 2020, 9(6), 647.
37 Nolas G S, Kaeser M, Littleton R T, et al. Applied Physics Letters, 2000, 77(12), 1855.
38 Wang X. Pore constructing and thermoelectric performance optimizing of Yb-filled CoSb3-based Skutterudite. Master’s Thesis, Dalian Jiaotong University, China, 2024(in Chinese).
王鑫. Yb填充CoSb3基方钴矿孔洞构筑与热电性能优化. 硕士学位论文, 大连交通大学, 2024.
39 Lu Q M, Zhang J X, Zhang X, et al. Journal of Applied Physics, 2005, 98(10), 1665.
40 Xu J S. Property optimization of p-type rare-earth filled skutterudite thermoelectric materials. Master’s Thesis, Zhejiang University, China, 2014(in Chinese).
徐荆舒. p型方钴矿基热电材料的混合稀土填充及性能优化. 硕士学位论文, 浙江大学, 2014.
41 Rogl G, Grytsiv A, Rogl P, et al. Acta Materialia, 2014, 63, 30.
42 Yin Z, Zhang H, Wang Y, et al. Advanced Energy Materials, 2025, 15(8), 2403174.
43 Zhou Z, Huang Y, Wei B. et al. Nature Communications, 2023, 14(1), 2410.
44 Zhang X Y. Effects of variable-valence elements Eu-/Sm- doping on the thermoelectric performance of BiCuSeO. Master’s Thesis, Dalian University of Technology, China, 2020(in Chinese).
张校影. 变价稀土元素Eu、Sm掺杂对BiCuSeO热电性能的影响. 硕士学位论文, 大连理工大学, 2020.
45 Feng B. Optimization of electrial/thermal transporting properties of BiCuSeO based thermoelectric materials. Ph. D. Thesis, Wuhan University of Science and Technology, China, 2020(in Chinese).
冯波. BiCuSeO基材料电热输运性能优化. 博士学位论文, 武汉科技大学, 2020.
46 Yin Z X. Study on doping, composite, and thermoelectric properties of BiCuSeO materials modulated by high pressure. Master’s Thesis, Changchun University of Science and Technology, China, 2023(in Chinese).
音展翔. 高压下BiCuSeO材料的掺杂、复合及其热电性能研究. 硕士学位论文, 长春理工大学, 2023.
47 Li J L. Optimizing synergistically the microstructure and the thermoelectric properties of BiCuSeO via doping with the rare-earth variable-valence element Yb. Master’s Thesis, Dalian University of Technology, China, 2018(in Chinese).
李金玲. 变价稀土元素Yb掺杂协同优化BiCuSeO微结构及热电性能. 硕士学位论文, 大连理工大学, 2018.
48 Gao C H. Experimental study on the effect of magnetic ion doping on the thermoelectric properties of BiCuSeO. Master’s Thesis, Shandong University of Technology, China, 2022(in Chinese).
高晨浩. 磁性离子掺杂对BiCuSeO热电性能影响的实验研究. 硕士学位论文, 山东理工大学, 2022.
49 Kipkham M J, Santos A M D, Rawn C J, et al. Physical Review B, 2012, 85(14), 4506.
50 Zheng Y, Liu C, Miao L, et al. Nano Energy, 2019, 59, 311.
51 Ying P, Liu X, Fu C, et al. Chemistry of Materials, 2015, 27(3), 909.
52 Zhao H, Sui J, Tang Z, et al. Nano Energy, 2014, 7, 97.
53 Sui J, Shuai J, Lan Y, et al. Acta Materialia, 2015, 87, 266.
54 Shuai J, Kim H S, Lan Y, et al. Nano Energy, 2015, 11, 640.
55 Liu Z, Zhang Y, Mao J, et al. Acta Materialia, 2017, 128, 227.
56 Qiu F H. Study on preparation of MgAgSb alloy materials and optimization strategy of thermoelectric properties at room temperature. Master’s Thesis, Guangxi University, China, 2024(in Chinese).
丘方虹. MgAgSb基合金制备及近室温热电性能优化策略研究. 硕士学位论文, 广西大学, 2024.
57 Sui R Q. Preparation and performance optimization of α-MgAgSb room-temperature thermoelectric materials. Master’s Thesis, Xihua University, China, 2020(in Chinese).
睢润庆. α-MgAgSb室温热电材料的制备及性能调控研究. 硕士学位论文, 西华大学, 2020.
58 Muta H, Kurosaki K, Yamanaka S. Journal of Alloys and Compounds, 2005, 392(1-2), 306.
59 Muta H, Kurosaki K, Yamanaka S. Journal of Alloys and Compounds, 2003, 350(1-2), 292.
60 Liu J, Wang C L, Peng H, et al. Journal of Electronic Materials, 2012, 41(11), 3073.
61 Roy P, Pal V, Maiti T. Ceramics International, 2017, 43(15), 12809.
62 Zheng Y, Zhang Q, Shi C, et al. Nature Communications, 2024, 15(1), 7650.
63 Wang H C, Wang C L, Su W B, et al. Journal of the American Ceramic Society, 2011, 94(3), 838.
64 Liu J, Wang C L, Su W B, et al. Ceramics Journal of Alloys and Compounds, 2010, 492(1-2), 54.
65 Liu D Q. Improvement of thermoelectric properties for SrTiO3 based materials via multi-element codoping. Ph. D. Thesis, Dalian University of Technology, China, 2020(in Chinese).
刘达权. SrTiO3基热电材料的多元素掺杂改性研究. 博士学位论文, 大连理工大学, 2020.
66 Cao Z Q. The investigation of transport and thermoelectrical properties of rare earth Sm doped SrTiO3 system. Master’s Thesis, Harbin Institute of Technology, China, 2010(in Chinese).
曹志群. 稀土元素Sm掺杂SrTiO3输运以及热电性能的研究. 硕士学位论文, 哈尔滨工业大学, 2010.
67 Wu H J, Wei P C, Su H Y, et al. ACS Applied Energy Materials, 2019, 2(10), 7564.
68 Yin H, Iversen B B. Science of Advanced Materials, 2011, 3(4), 592.
69 Cui J L, Mao L D, Chen D Y, et al. Current Applied Physics, 2009, 9(3), 713.
70 Tang D, Zhao W, Yu J, et al. Journal of Alloys and Compounds, 2014, 601, 50.
71 Liu F, Qin X Y, Xin H X. Journal of Physics D Applied Physics, 2007, 40(24), 7811.
72 Wang Q Q, Qin X Y. Procedia Engineering, 2012, 27, 77.
73 Pan L, Qin X Y, Liu M, et al. Journal of Alloys and Compounds, 2010, 489(1), 228.
74 Song L, Blichfeld A B, Zhang J, et al. Journal of Materials Chemistry A, 2018, 6(9), 4079.
75 Qin X Y, Liu M, Pan L, et al. Journal of Applied Physics, 2011, 109(3), 033714.
76 Pan L, Qin X Y, Liu M. Solid State Sciences, 2010, 12, 257.
77 Zhou L, Li W, Jiang J, et al. Journal of Alloys and Compounds, 2010, 503(2), 464.
78 Li D, Qin X Y. Intermetallics, 2011, 19(11), 1651.
79 Wang Q Q, Qin X Y, Li D, et al. Journal of Applied Physics, 2013, 113(12), 124901.
80 Wang Q Q, Qin X Y, Li D, et al. Applied Physics Letters, 2013, 102(15), 154101.
81 Wang Q Q. Effects of thermoelectric properties of β-Zn4Sb3 by rare earth doping. Ph. D. Thesis, University of Chinese Academy of Sciences, China, 2013(in Chinese).
王晴晴. 稀土元素掺杂对β-Zn4Sb3热电性能的影响. 博士学位论文, 中国科学院大学, 2013.
82 Ren B, Liu M, Li X, et al. Journal of Materials Chemistry A, 2015, 3(22), 11768.
83 Zou T H, Xie W J, Qin X Y, et al. Journal of Materiomics, 2016, 2(3), 273.
84 Palazzi M, Carcaly C, Flahaut T J. Journal of Solid State Chemistry, 1980, 35(2), 150.
85 Ueda K, Takafuji K, Hiramatsu H, et al. Chemistry of Materials, 2003, 15(19), 3692.
86 Natarajan A R, Ponvijayakanthan L, Gupta M K, et al. Physical Review Materials, 2023, 7(2), 025405.
87 Wang N, Li M, Xiao H, et al. Physical Review Applied, 2020, 13(2), 024038.
88 Einhorn M, Wililamson B A D, Scanlon D O. Journal of Materials Che-mistry A, 2020, 8(16), 7914.
89 Wollesen P, Kaiser J W, Jietschko W. Zeitschrift für Naturforschung B, 1997, 52(12), 1467.
90 Takano Y, Komatsuzaki S, Komasaki H, et al. Journal of Alloys and Compounds, 2008, 451(1-2), 467.
91 Hua Y. Synthesis and thermoelectric properties of Lu and Ce doped modified nanometer bismuth telluride based thermoelectric materials. Master’s Thesis, Nan Chang Institute of Technology, China, 2023(in Chinese).
华瑶. Lu、Ce掺杂改性纳米碲化铋基热电材料的制备及热电性能研究. 硕士学位论文, 南昌工程学院, 2023.
92 Liu J, Li Y K, Wang L G. Journal of Functional Materials, 2024, 55(3), 3113(in Chinese).
刘静, 李云凯, 王丽阁. 功能材料, 2024, 55(3), 3113.
93 Kabir R, Zhang T, Donelson R,et al. Physica Status Solid A, 2014, 211(5), 1200.
[1] 赵伟馨, 彭孔浩, 武玥, 郭文, 高鹤然, 张凌燕, 彭微, 李淑荣, 孟佩俊. PEI-NaGdF4:Yb3+,Tm3+稀土掺杂上转换纳米材料的制备及性能[J]. 材料导报, 2025, 39(5): 24120175-7.
[2] 巴倩, 刘志愿, 李周, 马妮, 马俊杰, 管希成, 夏爱林. Bi2Te3基材料热电性能优化策略[J]. 材料导报, 2025, 39(15): 24050140-10.
[3] 刘小村, 潘明艳. Ⅰ掺杂提高铅固溶立方相AgBiSe2热电性能[J]. 材料导报, 2023, 37(5): 21060082-5.
[4] 肖颖, 梁耕源, 雷博文, 贺雍律, 赵文姝, 鞠苏, 张鉴炜. 用于能量收集的离子热电材料研究进展[J]. 材料导报, 2023, 37(4): 22020174-9.
[5] 徐晨辉, 孔栋, 况志祥, 陈卓, 马燕, 邹富祥, 陈昕, 胡晓明, 冯波, 樊希安. 高性能新型Mg3(Sb,Bi)2基热电材料的发展现状[J]. 材料导报, 2023, 37(13): 21100209-10.
[6] 史燃, 张翔宇, 南波航, 徐桂英. Cu2Se热电忆阻器模拟计算与性能表征[J]. 材料导报, 2023, 37(13): 22010058-7.
[7] 郭涛, 李硕, 姚雅萱, 南波航, 徐桂英, 任玲玲. Bi-Te基薄膜热电材料的研究进展[J]. 材料导报, 2022, 36(4): 20040035-13.
[8] 董源, 徐桂英. GeTe热电材料的研究和进展[J]. 材料导报, 2022, 36(3): 20080307-10.
[9] 李英杰, 姚继伟, 雍辉, 马江微, 王帅, 胡季帆. 稀土掺杂对稀土-镁基合金储氢性能的影响[J]. 材料导报, 2022, 36(20): 22010264-8.
[10] 高然, 吴庆港, 雷乐乐, 钟定文, 海杰峰, 陆振欢. n型有机热电材料掺杂改性的研究进展[J]. 材料导报, 2022, 36(10): 21040015-11.
[11] 李鑫, 谢辉, 杨宾, 李双明. Mg2(Si,Sn)基热电材料研究进展[J]. 材料导报, 2020, 34(Z1): 43-47.
[12] 申兰先, 陈家莉, 李德聪, 刘文婷, 葛文, 邓书康. Yb掺杂Ⅷ型YbxBa8-xGa16Sn30笼合物的制备及热电性能[J]. 材料导报, 2020, 34(8): 8136-8140.
[13] 金胜男, 孙婷婷, 王明辉, 江莞. 电化学沉积法制备PEDOT/PEDOT∶PSS基柔性纳米纤维膜及其热电性能[J]. 材料导报, 2020, 34(8): 8184-8187.
[14] 林锦豪, 谢华清, 吴子华, 李奕怀, 王元元. Cu2-xS和Cu2-xSe类液态材料的可控制备与热电性能研究进展[J]. 材料导报, 2020, 34(7): 7071-7081.
[15] 包鑫, 柏胜强, 吴子华, 吴汀, 顾明, 谢华清. CoSb3基方钴矿热电材料保护涂层研究进展[J]. 材料导报, 2019, 33(5): 784-790.
[1] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[2] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[3] JIA Zhihong, WENG Yaoyao, DING Lipeng, CHENG Tao, LIU Yingying, LIU Qing. Sn Microalloying for Aluminum Alloys: Strengthening Effects and Mechanisms[J]. Materials Reports, 2017, 31(9): 123 -127 .
[4] WANG Ru, ZHANG Shaokang, WANG Gaoyong. Influence and Mechanism of Mineral Admixtures on Setting and Hardening of Styrene-Butadiene Copolymer/Cement Composite Cementitious Material[J]. Materials Reports, 2017, 31(24): 69 -73 .
[5] DING Yutian, DOU Zhengyi, GAO Yubi, GAO Xin, LI Haifeng, LIU Dexue. In-situ Observation of Solidification Process of GH3625 Superalloy at Different Cooling Rates[J]. Materials Reports, 2017, 31(24): 150 -155 .
[6] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[7] LIU Guoyi, LIU Yuanjun, ZHAO Xiaoming. A Study on Protecting Efficiency to the Radiative Heat of the Outer Fabric for the Fire Proximity Suits[J]. Materials Reports, 2017, 31(22): 116 -120 .
[8] ZHANG Wangxi, WANG Yanzhi, LIANG Baoyan, LI Qiquan, LUO Wei, SUN Changhong, CHENG Xiaozhe, SUN Yuzhou. Review on the Development of Nanodiamonds Used as Functional Materials[J]. Materials Reports, 2018, 32(13): 2183 -2188 .
[9] YANG Fang, ZHANG Long, YU Kun, QI Tianjiao, GUAN Debin. Recent Advances in Humidity Sensitivity of Graphene[J]. Materials Reports, 2018, 32(17): 2940 -2948 .
[10] TIAN Yaqiang, LI Wang, ZHENG Xiaoping, WEI Yingli, SONG Jinying, CHEN Liansheng. Application of Alloy Elements in Quenching and Partitioning Steel:an Overview[J]. Materials Reports, 2019, 33(7): 1109 -1118 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed