Please wait a minute...
材料导报  2025, Vol. 39 Issue (15): 24050140-10    https://doi.org/10.11896/cldb.24050140
  金属与金属基复合材料 |
Bi2Te3基材料热电性能优化策略
巴倩1, 刘志愿1,2,*, 李周3, 马妮4, 马俊杰1, 管希成1, 夏爱林1
1 安徽工业大学材料科学与工程学院,先进陶瓷研究中心,安徽 马鞍山 243002
2 合肥综合性国家科学中心能源研究院(安徽省能源实验室),合肥 230031
3 安徽大学材料科学与工程学院,合肥 230601
4 中国科学技术大学化学与材料科学学院,合肥 230026
Optimization Strategies for Thermoelectric Properties of Bi2Te3-based Materials
BA Qian1, LIU Zhiyuan1,2,*, LI Zhou3, MA Ni4, MA Junjie1, GUAN Xicheng1, XIA Ailin1
1 Advanced Ceramics Research Center, School of Materials Science and Engineering, Anhui University of Technology, Maanshan 243002, Anhui, China
2 Institute of Energy, Hefei Comprehensive National Science Center (Anhui Energy Laboratory), Hefei 230031, China
3 School of Materials Science and Engineering, Anhui University, Hefei 230601, China
4 School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
下载:  全 文 ( PDF ) ( 15564KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 Bi2Te3基材料因其特殊的晶体结构和能带结构,具有较低的热导率和较高的泽贝克系数及载流子迁移率,是当前公认最好的近室温热电材料,在热电制冷领域有重要应用。然而,作为热电器件核心部件的Bi2Te3基材料的无量纲热电优值zT仍较低,导致器件的转换效率较低。因此,进一步提升Bi2Te3基材料的zT值仍是关键。本文主要综述了近年来通过载流子工程、能带工程、纳米工程等策略优化Bi2Te3基材料电、热输运性能的主要研究进展。通过这些策略可以协同调控电和热输运性能,显著提升Bi2Te3基材料的zT值,为开发高效热电材料提供新的研究思路。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
巴倩
刘志愿
李周
马妮
马俊杰
管希成
夏爱林
关键词:  Bi2Te3基热电材料  电性能  热性能  优化策略    
Abstract: Bi2Te3-based materials are currently recognized as the best near room temperature thermoelectric materials due to their special crystal structure and band structure, low thermal conductivity, high seebeck coefficient, and carrier mobility. They have been widely used in the field of thermoelectric refrigeration. However, while as a core component of thermoelectric devices, the dimensionless thermoelectric figure of merit zT of Bi2Te3-based materials is still relatively low, resulting in lower conversion efficiency of the devices. Therefore, further improving the zT value of Bi2Te3-based materials is still crucial. This article mainly reviews the main research progress in recent years on optimizing the electrical and thermal transport properties of Bi2Te3-based materials through some strategies such as carrier engineering, band engineering, nano-engineering. These strategies can synergistically regulate the electrical and thermal transport performance, significantly improve the zT value of Bi2Te3-based materials, which can provide new research ideas for the development of efficient thermoelectric materials.
Key words:  Bi2Te3-based thermoelectric material    electrical performance    thermal performance    optimization strategy
出版日期:  2025-08-10      发布日期:  2025-08-13
ZTFLH:  TG132.24  
基金资助: 安徽省优秀青年项目(2208085Y17); 安徽省高校协同创新项目(GXXT-2022-008; GXXT-2021-022);国家自然科学基金(51872006)
通讯作者:  刘志愿,安徽工业大学副教授、博士研究生导师,院长助理。长期从事热电转换材料和磁性纳米材料的研究。zhiyuanliu826@ahut.edu.cn   
作者简介:  巴倩,安徽工业大学材料与科学工程学院硕士研究生,在刘志愿副教授的指导下进行热电材料的性能优化与输运机制研究。
引用本文:    
巴倩, 刘志愿, 李周, 马妮, 马俊杰, 管希成, 夏爱林. Bi2Te3基材料热电性能优化策略[J]. 材料导报, 2025, 39(15): 24050140-10.
BA Qian, LIU Zhiyuan, LI Zhou, MA Ni, MA Junjie, GUAN Xicheng, XIA Ailin. Optimization Strategies for Thermoelectric Properties of Bi2Te3-based Materials. Materials Reports, 2025, 39(15): 24050140-10.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24050140  或          https://www.mater-rep.com/CN/Y2025/V39/I15/24050140
1 Snyder G J, Toberer E S. Nature Materials, 2008, 7(2), 105.
2 Von Lukowicz M, Abbe E, Schmiel T, et al. Energies, 2016, 9(7), 541.
3 Morata A, Pacios M, Gadea G, et al. Nature Communications, 2018, 9(1), 4759.
4 Yu J, Lai H J, Shi R Z, et al. Advanced Ceramics, 2023, 44(5-6), 397(in Chinese).
余锦, 赖华俊, 施润泽, 等. 现代技术陶瓷, 2023, 44(5-6), 397.
5 Venkatasubramanian R, Siivola E, Colpitts T, et al. Nature, 2001, 413(6856), 597.
6 Xiao Y, Li W, Chang C, et al. Journal of Alloys and Compounds, 2017, 724, 208.
7 Wang C, Kang W F, Zhang L H, et al. China Powder Science and Technology, 2021, 27(5), 111(in Chinese).
王聪, 康伟峰, 张林慧, 等. 中国粉体技术, 2021, 27(5), 111.
8 Poudel B, Hao Q, Ma Y, et al. Science, 2008, 320(5876), 634.
9 Deng R, Su X, Zheng Z, et al. Science Advances, 2018, 4(6), eaar5606.
10 Kim S I, Lee K H, Mun H A, et al. Science, 2015, 348(6230), 109.
11 Deng R, Su X, Hao S, et al. Energy & Environmental Science, 2018, 11(6), 1520.
12 Hu L P, Zhu T J, Yue X Q, et al. Acta Materialia, 2015, 85, 270.
13 Pan Y, Wei T R, Wu C F, et al. Journal of Materials Chemistry C, 2015, 3(40), 10583.
14 Hu L, Zhu T, Liu X, et al. Advanced Functional Materials, 2014, 24(33), 5211.
15 Hu L, Wu H, Zhu T, et al. Advanced Energy Materials, 2015, 5(17), 1500411.
16 Sun Y, Qin H, Wang W, et al. ACS Applied Energy Materials, 2021, 4(5), 4986.
17 Lim S S, Jung S J, Kim B K, et al. Journal of the European Ceramic Society, 2020, 40(8), 3042.
18 Pei Y, Wang H, Snyder G J. Advanced Materials, 2012, 24(46), 6125.
19 Makongo J P A, Misra D K, Zhou X, et al. Journal of the American Chemical Society, 2011, 133(46), 18843.
20 Zhu B, Wang W, Cui J, et al. Small, 2021, 17(29), 2101328.
21 Yang G, Niu R, Sang L, et al. Advanced Energy Materials, 2020, 10, 2000757.
22 Tang X, Xie W, Li H, et al. Applied Physics Letters, 2007, 90(1), 012102.
23 Shen J J, Zhu T J, Zhao X B, et al. Energy & Environmental Science, 2010, 3(10), 1519.
24 Horák J, Čermák K, Koudelka L. Journal of Physics and Chemistry of Solids, 1986, 47(8), 805.
25 West D, Sun Y Y, Wang H, et al. Physical Review B, 2012, 86(12), 121201.
26 Starý Z, Horák J, Stordeur M, et al. Journal of Physics and Chemistry of Solids, 1988, 49(1), 29.
27 Hu L, Meng F, Zhou Y, et al. Advanced Functional Materials, 2020, 30(45), 2005202.
28 Zhu Y K, Sun Y, Zhu J, et al. Small, 2022, 18(23), 2201352.
29 Wu Y, Zhai R, Zhu T, et al. Materials Today Physics, 2017, 2, 62.
30 Lee C H, Dharmaiah P, Kim D H, et al. ACS Applied Materials & Interfaces, 2022, 14(8), 10394.
31 Wei Z, Yang Y, Wang C, et al. RSC Advances, 2019, 9(4), 2252.
32 Go E H, Vasudevan R, Madavali B, et al. Powder Metallurgy, 2023, 66, 1.
33 Xiong C, Shi F, Wang H, et al. ACS Applied Materials & Interfaces, 2021, 13(13), 15429.
34 Sun Y, Wu H, Dong X, et al. Advanced Functional Materials, 2023, 33(28), 2301423.
35 Dharmaiah P, Lee K H, Song S H, et al. Materials Research Bulletin, 2021, 133, 111023.
36 Huang H, Li J, Chen S, et al. Journal of Solid State Chemistry, 2020, 288, 121433.
37 Wang X, Cheng J, Yin L, et al. Advanced Functional Materials, 2022, 32(24), 2200307.
38 Delves R T, Bowley A E, Hazelden D W, et al. Proceedings of the Physical Society, 1961, 78(5), 838.
39 Hu L P, Liu X H, Xie H H, et al. Acta Materialia, 2012, 60(11), 4431.
40 Yim W M, Fitzke E V, Rosi F D. Journal of Materials Science, 1966, 1(1), 52.
41 Jiang J, Chen L, Bai S, et al. Journal of Crystal Growth, 2005, 277(1), 258.
42 Hyun D B, Oh T S, Hwang J S, et al. Scripta Materialia, 1998, 40(1), 49.
43 Yamashita O, Tomiyoshi S, Makita K. Journal of Applied Physics, 2002, 93(1), 368.
44 Sokolov O B, Skipidarov S Y, Duvankov N I. Journal of Crystal Growth, 2002, 236(1-3), 181.
45 Yamanaka S, Kosuga A, Kurosaki K. Journal of Alloys and Compounds, 2003, 352(1-2), 275.
46 Hong S J, Lee Y S, Byeon J W, et al. Journal of Alloys and Compounds, 2006, 414(1), 146.
47 Seo J, Park K, Lee D, et al. Materials Science and Engineering:B, 1997, 49(3), 247.
48 Kajita K, Ishizuka T, Miura A, et al. Biochemical and Biophysical Research Communications, 2000, 277(2), 361.
49 Karaman I, Robertson J, Im J T, et al. Metallurgical and Materials Transactions A, 2004, 35(1), 247.
50 Jiang J, Chen L, Bai S, et al. Materials Science and Engineering:B, 2005, 117(3), 334.
51 Zhao L D, Zhang B P, Li J F, et al. Physica B:Condensed Matter, 2007, 400(1), 11.
52 Zhao L D, Zhang B P, Li J F, et al. Solid State Sciences, 2008, 10(5), 651.
53 El-Asfoury M S, Abdou S M, Nassef A. Journal of Alloys and Compounds, 2021, 887, 161399.
54 Liu X, Xing T, Qiu P, et al. Journal of Materiomics, 2023, 9(2), 345.
55 Qiu J, Yan Y, Luo T, et al. Energy & Environmental Science, 2019, 12(10), 3106.
56 Li Y Z, Zhang Q, Liu K, et al. Materials Today Nano, 2023, 22, 100340.
57 Zhou J, Feng J, Li H, et al. Small, 2023, 19(24), 2300654.
58 Chen Y Y, Shi Q, Zhong Y, et al. Chinese Physics B, 2023, 32(6), 67201.
59 Jung S J, Lee B H, Won S O, et al. Materials Letters, 2021, 301, 130278.
60 Guo S, Anand S, Brod M K, et al. Journal of Materials Chemistry A, 2022, 10(6), 3051.
61 Pei Y, Shi X, LaLonde A, et al. Nature, 2011, 473(7345), 66.
62 Ibáñez M, Hasler R, Genç A, et al. Journal of the American Chemical Society, 2019, 141(20), 8025.
63 Liu W, Tan X, Yin K, et al. Physical Review Letters, 2012, 108(16), 166601.
64 Qin B, Wang D, Liu X, et al. Science, 2021, 373(6554), 556.
65 Witting I T, Chasapis T C, Ricci F, et al. Advanced Electronic Materials, 2019, 5(6), 1800904.
66 Hashibon A, Elsässer C. Physical Review B, 2011, 84(14), 144117.
67 Ivanov O, Yaprintsev M, Lyubushkin R, et al. Scripta Materialia, 2018, 146, 91.
68 Jaworski C M, Kulbachinskii V, Heremans J P. Physical Review B, 2009, 80(23), 233201.
69 Kim H S, Heinz N A, Gibbs Z M, et al. Materials Today, 2017, 20(8), 452.
70 Kong D, Chen Y, Cha J J, et al. Nature Nanotechnology, 2011, 6(11), 705.
71 Heremans J P, Wiendlocha B. Materials aspect of thermoelectricity, CRC Press, USA, 2016, pp, 39.
72 Qin H, Zhang Y, Cai S, et al. Chemical Engineering Journal, 2021, 425, 130670.
73 Zhao X, Zhu X H, Zhang R Z. Physica Status Solidi A-Applications and Materials Science, 2016, 213(12), 3250.
74 Kawajiri Y, Tanusilp S, Kumagai M, et al. ACS Applied Energy Materials, 2021, 4(10), 11819.
75 Hu Q, Guo J, Zuo H, et al. Ceramics International, 2023, 49(19), 32144.
76 Zhang D, Lei J, Guan W, et al. Journal of Alloys and Compounds, 2019, 784, 1276.
77 Madavali B, Kim H S, Lee K H, et al. Intermetallics, 2017, 82, 68.
78 Chen T, Qin X, Ming H, et al. Chemical Engineering Journal, 2023, 467, 143397.
79 Liang S, Zhang M, Zhu H, et al. Current Applied Physics, 2023, 49, 143.
80 Cho H, Back S Y, Yun J H, et al. ACS Applied Materials & Interfaces, 2020, 12(34), 38076.
81 Aminorroaya Y S, Santos R, Fortulan R, et al. ACS Applied Materials & Interfaces, 2023, 15(15), 19220.
82 Dharmaiah P, Nagarjuna C, Sharief P, et al. Applied Surface Science, 2021, 556, 149783.
83 Wang Y S, Huang L L, Li D, et al. Journal of Alloys and Compounds, 2018, 758, 72.
84 Zhao L, Qiu W, Sun Y, et al. Journal of Alloys and Compounds, 2021, 863, 158376.
85 Thanh-Nam H, Babu M, Nersisyan H H, et al. Chemical Engineering Journal, 2022, 437, 135460.
86 Zhang Z, Zhao W, Zhu W, et al. Journal of Electronic Materials, 2020, 49(5), 2794.
87 Puneet P, Podila R, Karakaya M, et al. Scientific Reports, 2013, 3(1), 3212.
88 Puneet P, Podila R, Zhu S, et al. Advanced Materials, 2013, 25(7), 1033.
89 Du B, Lai X, Liu Q, et al. ACS Applied Materials & Interfaces, 2019, 11(35), 31816.
90 Chen Z, Ge B, Li W, et al. Nature Communications, 2017, 8(1), 13828.
91 Chen Z, Jian Z, Li W, et al. Advanced Materials, 2017, 29(23), 1606768.
92 Biswas K, He J, Blum I D, et al. Nature, 2012, 489(7416), 414.
93 Saglik K, Yahyaoglu M, Candolfi C, et al. Chemistry of Materials, 2023, 35(9), 3603.
94 Wang Y, Liu W D, Shi X L, et al. Chemical Engineering Journal, 2020, 391, 123513.
95 Deng M, Huang Y. Ceramics International, 2019, 45, 24914.
96 Hu Q, Qiu W, Chen L, et al. ACS Applied Materials & Interfaces, 2021, 13(32), 38526.
97 Yang G, Sang L, Mitchell D R G, et al. Chemical Engineering Journal, 2022, 428, 131205.
98 Li Y Z, Zhang Q, Liu K, et al. Materials Today Nano, 2023, 22, 100340.
99 Hu Y, Cui W, Lu W, et al. Journal of Alloys and Compounds, 2023, 949, 169850.
100 Li D, Li J M, Li J C, et al. Journal of Materials Chemistry A, 2018, 6(20), 9642.
101 Li Y, Ren M, Sun Z, et al. RSC Advances, 2021, 11(58), 36636.
102 Xu Y, Wu X, Zhu B, et al. ChemNanoMat, 2023, 9(2), e202200497.
103 Tan C, Tan X, Shi F, et al. Ceramics International, 2021, 47(1), 725.
104 Li C Y, Niu J X, Zhang J Y, et al. Journal of the European Ceramic Society, 2024, 44(2), 961.
105 Li G, Bajaj S, Aydemir U, et al. Chemistry of Materials, 2016, 28(7), 2172.
106 Quarez E, Hsu K F, Pcionek R, et al. Journal of the American Chemical Society, 2005, 127(25), 9177.
107 Lee M H, Byeon D G, Rhyee J S, et al. Journal of Materials Chemistry A, 2017, 5(5), 2235.
108 Zhao C, Li Z, Fan T, et al. Research, 2020, 2020, 1.
109 Jiang J, Chen L, Yao Q, et al. Materials Chemistry and Physics, 2005, 92(1), 39.
110 Perrin D, Chitroub M, Scherrer S, et al. Journal of Physics and Che-mistry of Solids, 2000, 61(10), 1687.
111 Termentzidis K, Pokropyvnyy O, Woda M, et al. Journal of Applied Physics, 2013, 113(1), 013506.
112 Shi X, Ai X, Zhang Q, et al. Journal of Advanced Ceramics, 2020, 9(4), 424.
113 Chen Z, Zhang X, Pei Y. et al. Advanced Materials, 2018, 30(17), 1705617.
114 Klemens P G. Proceedings of the Physical Society Section A, 1955, 68(12), 1113.
115 Kim S I, Lee K H, Mun H A, et al. Science, 2015, 348(6230), 109.
116 Pei Y, May A F, Snyder G J. Advanced Energy Materials, 2011, 1(2), 291.
117 Toberer E S, Zevalkink A, Snyder G J. Journal of Materials Chemistry, 2011, 21(40), 15843.
118 Liu Y, Zhou M, He J. Scripta Materialia, 2016, 111, 39.
119 Xin J, Wu H, Liu X, et al. Nano Energy, 2017, 34, 428.
120 Kim H S, Kang S D, Tang Y, et al. Materials Horizons, 2016, 3(3), 234.
121 Karolik A S, Luhvich A A. Journal of Physics:Condensed Matter, 1994, 6(4), 873.
122 Wang C, Du K, Song K, et al. Physical Review Letters, 2018, 120(18), 186102.
123 Zhang Q, Lin Y, Lin N, et al. Materials Today Physics, 2022, 22, 100573.
124 Faleev S V, Léonard F. Physical Review B, 2008, 77(21), 214304.
125 Rowe D M, Shukla V S, Savvides N. Nature, 1981, 290(5809), 765.
126 Zhang Q, Ai X, Wang L, et al. Advanced Functional Materials, 2015, 25(6), 966.
127 Hwang S, Kim S I, Ahn K, et al. Journal of Electronic Materials, 2013, 42(7), 1411.
128 Peng J, Fu L, Liu Q, et al. Journal of Materials Chemistry A, 2014, 2(1), 73.
129 Li C, Ma S, Wei P, et al. Energy & Environmental Science, 2020, 13(2), 535.
130 Vining C B. Journal of Applied Physics, 1991, 69(1), 331.
131 Savvides N, Goldsmid H J. Journal of Physics C:Solid State Physics, 1980, 13(25), 4657.
132 Vining C B, Laskow W, Hanson J O, et al. Journal of Applied Physics, 1991, 69(8), 4333.
133 Hyun D B, Hwang J S, Shim J D, et al. Journal of Materials Science, 2001, 36(5), 1285.
134 Dresselhaus M S, Chen G, Tang M Y, et al. Advanced Materials, 2007, 19(8), 1043.
135 Koga T, Cronin S B, Dresselhaus M S, et al. Applied Physics Letters, 2000, 77(10), 1490.
136 Zhao X B, Yang S H, Cao Y Q, et al. Journal of Electronic Materials, 2009, 38(7), 1017.
137 Zhu T J, Cao Y Q, Zhang Q, et al. Journal of Electronic Materials, 2010, 39(9), 1990.
138 Cao Y Q, Zhu T J, Zhao X B, et al. Applied Physics A, 2008, 92(2), 321.
139 Harman T C, Taylor P J, Walsh M P, et al. Science, 2002, 297(5590), 2229.
140 Xie W, Tang X, Yan Y, et al. Applied Physics Letters, 2009, 94(10), 102111.
141 Kim W, Zide J, Gossard A, et al. Physical Review Letters, 2006, 96(4), 045901.
142 Chen G. Physical Review B, 1998, 57(23), 14958.
143 Mamur H, Bhuiyan M R A, Korkmaz F, et al. Renewable and Sustai-nable Energy Reviews, 2018, 82, 4159.
[1] 崔楷敏, 李端, 李学超, 刘荣军, 王衍飞. 耐高温Al-Si-O结构功能一体化材料研究进展[J]. 材料导报, 2025, 39(14): 24070084-10.
[2] 黄云龙, 崔巍巍, 侯亚娟, 董昊霖. BT@PDA增强PVDF/PMMA复合薄膜的介电与储能性能研究[J]. 材料导报, 2025, 39(13): 24050123-10.
[3] 徐升亮, 廖凯, 杨湘杰, 郭洪民. Sc含量及热处理对Al-Si-Cu-Mg合金组织及热学性能的影响[J]. 材料导报, 2025, 39(11): 24060195-8.
[4] 赵卫平, 刘英健, 生兆川, 程赛, 徐旸. 三维细观早龄期混凝土导热性能数值模拟[J]. 材料导报, 2025, 39(10): 24040083-10.
[5] 郑思铭, 李蔚, 杨函瑞, 陈松, 魏取福. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 22100107-10.
[6] 张昌松, 王向阳, 魏立柱, 王如鹏. 折叠结构的PVDF/BTO复合薄膜压电纳米发电机的制备及性能研究[J]. 材料导报, 2024, 38(6): 22080132-6.
[7] 杨菊香, 贾园, 马文建, 李朋娜, 屈颖娟. 互穿网络结构的二氧化硅/环氧树脂复合材料的制备及介电性能研究[J]. 材料导报, 2024, 38(5): 22080082-6.
[8] 孟令欣, 邓伟, 胡思远, 冯嘉唯, 王照盼. Al2O3/PEI复合介质的高温储能特性研究[J]. 材料导报, 2024, 38(22): 23110021-8.
[9] 刘世盟, 郭乃胜, 崔世超, 褚召阳, 赵近川. PDA/GO/PUF聚氨酯泡沫的力学与隔热性能及其微观机理[J]. 材料导报, 2024, 38(22): 23110080-9.
[10] 田小飞, 王林山, 梁雪冰, 郑逢时, 胡强. 电力电子器件用液冷针翅散热器的研究进展[J]. 材料导报, 2024, 38(21): 23070138-11.
[11] 李思盈, 周超. 海泡石纤维增强二氧化硅气凝胶的制备及性能[J]. 材料导报, 2024, 38(19): 23030233-9.
[12] 冯文彪, 李鑫, 张亚龙. Mg3Sb2合金中Mg空位对电子传输性能的影响[J]. 材料导报, 2024, 38(17): 22110149-7.
[13] 张鹏伟, 宋惠, 白慧萍, 易剑, 江南, 西村一仁. 太赫兹行波管用金刚石输能窗研究进展[J]. 材料导报, 2024, 38(16): 22120014-9.
[14] 吴妹, 徐晓磊, 李晓, 刘玖红, 于光睿, 段好东, 韩玉玺, 于青, 王忠卫. 甲基取代二芳基氧化膦阻燃改性环氧树脂的研究[J]. 材料导报, 2024, 38(16): 23040213-10.
[15] 王海燕, 咸龙帝, 尚天蓉, 姚佳岐, 燕小斌, 李澜. BT@PANI核壳粒子的绿色制备及PVDF基复合材料的介电性能[J]. 材料导报, 2024, 38(13): 22120173-6.
[1] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[2] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[3] JIA Zhihong, WENG Yaoyao, DING Lipeng, CHENG Tao, LIU Yingying, LIU Qing. Sn Microalloying for Aluminum Alloys: Strengthening Effects and Mechanisms[J]. Materials Reports, 2017, 31(9): 123 -127 .
[4] WANG Ru, ZHANG Shaokang, WANG Gaoyong. Influence and Mechanism of Mineral Admixtures on Setting and Hardening of Styrene-Butadiene Copolymer/Cement Composite Cementitious Material[J]. Materials Reports, 2017, 31(24): 69 -73 .
[5] DING Yutian, DOU Zhengyi, GAO Yubi, GAO Xin, LI Haifeng, LIU Dexue. In-situ Observation of Solidification Process of GH3625 Superalloy at Different Cooling Rates[J]. Materials Reports, 2017, 31(24): 150 -155 .
[6] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[7] LIU Guoyi, LIU Yuanjun, ZHAO Xiaoming. A Study on Protecting Efficiency to the Radiative Heat of the Outer Fabric for the Fire Proximity Suits[J]. Materials Reports, 2017, 31(22): 116 -120 .
[8] ZHANG Wangxi, WANG Yanzhi, LIANG Baoyan, LI Qiquan, LUO Wei, SUN Changhong, CHENG Xiaozhe, SUN Yuzhou. Review on the Development of Nanodiamonds Used as Functional Materials[J]. Materials Reports, 2018, 32(13): 2183 -2188 .
[9] YANG Fang, ZHANG Long, YU Kun, QI Tianjiao, GUAN Debin. Recent Advances in Humidity Sensitivity of Graphene[J]. Materials Reports, 2018, 32(17): 2940 -2948 .
[10] TIAN Yaqiang, LI Wang, ZHENG Xiaoping, WEI Yingli, SONG Jinying, CHEN Liansheng. Application of Alloy Elements in Quenching and Partitioning Steel:an Overview[J]. Materials Reports, 2019, 33(7): 1109 -1118 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed