Please wait a minute...
材料导报  2025, Vol. 39 Issue (13): 24050123-10    https://doi.org/10.11896/cldb.24050123
  高分子与聚合物基复合材料 |
BT@PDA增强PVDF/PMMA复合薄膜的介电与储能性能研究
黄云龙1, 崔巍巍1,2,*, 侯亚娟1, 董昊霖1
1 哈尔滨理工大学材料科学与化学工程学院,哈尔滨 150040
2 哈尔滨理工大学工程电介质及其应用教育部重点实验室,哈尔滨 150080
Enhanced Dielectric and Energy Storage Properties of PVDF/PMMA Composite Films Modified with BT@PDA
HUANG Yunlong1, CUI Weiwei1,2,*, HOU Yajuan1, DONG Haolin1
1 School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, China
2 MoE Key Laboratory of Engineering Dielectrics and Its Application, Harbin University of Science and Technology, Harbin 150080, China
下载:  全 文 ( PDF ) ( 27827KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作采用多巴胺(DA)在钛酸钡(BT)纳米颗粒表面自聚合得到具有核壳结构的钛酸钡@聚多巴胺(BT@PDA)颗粒,分别将相同质量的BT和BT@PDA颗粒分散到聚偏氟乙烯/聚甲基丙烯酸甲酯(PVDF/PMMA)共混聚合物基质中,制得BT/PVDF/PMMA复合薄膜和BT@PDA/PVDF/PMMA复合薄膜。实验结果表明,PDA包覆层在提高介电常数、抑制介电损耗、提高击穿场强和改善力学性能方面发挥了积极的促进作用。室温下BT@PDA/PVDF/PMMA复合薄膜在102 Hz下介电常数达到10.9,与未加填料的PVDF/PMMA薄膜相比提升了67.7%;介电损耗为0.052,降低了32.4%;击穿场强达到606 kV/mm,提升了68.8%;放电能量密度达到10.3 J/cm3,提升了128.9%,并且充放电效率保持在58%以上。在高温(50~90 ℃)情况下,PDA包覆层在介电性能、储能性能方面仍然发挥了积极作用。70 ℃时,BT@PDA/PMMA/PVDF复合薄膜的储能密度为6.48 J/cm3,充放电效率仍然在53%以上。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄云龙
崔巍巍
侯亚娟
董昊霖
关键词:  储能密度  介电性能  聚偏氟乙烯(PVDF)  聚甲基丙烯酸甲酯(PMMA)  BT@PDA    
Abstract: This study presents the design and synthesis of core-shell structured barium titanate@polydopamine(BT@PDA) particles through the in-situ polymerization of dopamine (DA) on the surface of BT nanoparticles. An equivalent mass of pristine BT and BT@PDA particles was subsequently dispersed into a polyvinylidene fluoride/poly(methyl methacrylate) (PVDF/PMMA) copolymer matrix, resulting in composite films of BT/PVDF/PMMA and BT@PDA/PVDF/PMMA. The experimental results indicate that the PDA coating significantly enhances the dielectric constant, mitigates dielectric loss, elevates the breakdown strength, and improves mechanical properties. At room temperature, the dielectric constant of the BT@PDA/PVDF/PMMA composite film at 102Hz reached 10.9, making a 67.7% increase over the unfilled PVDF/PMMA film;the dielectric loss was reduced by 32.4% to 0.052;the breakdown strength was raised by 68.8% to 606 kV/mm;and the discharged energy density was elevated by 128.9% to 10.3 J/cm3, with charge-discharge efficiency maintained above 58%. Furthermore, under high-temperature conditions ranging from 50 ℃ to 90 ℃, the PDA coating continues to positively affect the dielectric and energy storage properties. At 70 ℃, the energy storage density of the BT@PDA/PMMA/PVDF composite film was 6.48 J/cm3, with an efficiency exceeding 53%.
Key words:  energy storage density    dielectric properties    polyvinylidene fluoride (PVDF)    polymethyl methacrylate (PMMA)    BT@PDA
出版日期:  2025-07-10      发布日期:  2025-07-21
ZTFLH:  TM215.3  
基金资助: 国家自然科学基金(51603057)
通讯作者:  *崔巍巍,博士,哈尔滨理工大学材料科学与化学工程学院副教授、硕士研究生导师。目前主要从事储能聚合物、传感器材料等方面的研究。cuiww@hrbust.edu.cn   
作者简介:  黄云龙,哈尔滨理工大学材料科学与化学工程学院硕士研究生,在崔巍巍副教授的指导下进行研究。目前主要研究领域为聚合物基介电储能复合材料。
引用本文:    
黄云龙, 崔巍巍, 侯亚娟, 董昊霖. BT@PDA增强PVDF/PMMA复合薄膜的介电与储能性能研究[J]. 材料导报, 2025, 39(13): 24050123-10.
HUANG Yunlong, CUI Weiwei, HOU Yajuan, DONG Haolin. Enhanced Dielectric and Energy Storage Properties of PVDF/PMMA Composite Films Modified with BT@PDA. Materials Reports, 2025, 39(13): 24050123-10.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24050123  或          https://www.mater-rep.com/CN/Y2025/V39/I13/24050123
1 Aziz A, Ahammad A J S, Rahman M.Chemical Record, 2024, 24(1), e202300358.
2 Dong S, Gao W H, Shi K M, et al.Cell Reports Physical Science, 2023, 4(2), 101284.
3 Burke A.Applied Sciences, 2021, 11(17), 8063.
4 Liu T Y, Liu G L.Journal of Physics-Condensed Matter, 2019, 31(23), 233001.
5 Luo S B, Yu J Y, Yu S H, et al.Advanced Energy Materials, 2019, 9(5), 1803204.
6 Wu Z Q, Peng Y W, Guo Q, et al.Materials Today Communications, 2022, 32, 103857.
7 Zheng S, Xie J, Zhao X, et al.Langmuir, 2023, 39(10), 3710.
8 Zhang C, Yan W, Zhang Y, et al.ACS Applied Electronic Materials, 2023, 5(7), 3817.
9 Cui Y, Feng Y, Zhang T, et al.ACS Applied Materials & Interfaces, 2020, 12(50), 56424.
10 Wang Z, Fan J, Guo X, et al.RSC Advances, 2020, 10(45), 27025.
11 Pei J Y, Yin L J, Zhong S L, et al.Advanced Materials, 2023, 35(3), 2203623.
12 Prabhung P, Comlek Y, Shandilya A, et al.Nanomaterials, 2023, 13(17), 2394.
13 Hao Y N, Feng Z P, He Z D, et al.Materials & Design, 2020, 189, 108523.
14 Wang Y, Yang D D, Hessien M M, et al.Advanced Composites and Hybrid Materials, 2022, 5(3), 2106.
15 Zhao T Y, Ye Y S, Guo K X, et al.Journal of Alloys and Compounds, 2024, 970, 172487.
16 Xia W, Zhou J, Hu T, et al.Composites Part A:Applied Science and Manufacturing, 2020, 131, 105805.
17 Xu H, Xie C, Gou B, et al.Composites Science and Technology, 2022, 230, 109777.
18 Zhou Y, Liu W, Tan B, et al.Polymers, 2021, 13(7), 998.
19 Trabelsi A B G, Mostafa A M, Alkallas F H, et al.Micromachines, 2023, 14(6), 1195.
20 Chen X, Tougne C, Jiang T, et al.Polymer, 2022, 261, 125366.
21 Sagirli F Z E, Unsal C, Kayali E S, et al.Reactive and Functional Polymers, 2016, 100, 1.
22 Zhao P, Wang L, Bian L, et al.Journal of Materials Science & Technology, 2015, 31(2), 223.
23 Zhang L, Wang Y, Xu M, et al.ACS Applied Energy Materials, 2019, 2(8), 5945.
24 Zha J W, Xiao M, Wan B, et al.Progress in Materials Science, 2023, 140, 101208.
25 Yang D, Huang S, Ruan M, et al.Journal of Materials Chemistry C, 2017, 5(31), 7759.
26 Wang R, Xie C, Luo S, et al.ACS Applied Energy Materials, 2021, 4(6), 6135.
27 Zhang C, Zhang T, Feng M, et al.ACS Sustainable Chemistry & Engineering, 2021, 9(48), 16291.
28 Zheng S, Xie J, Zhao X, et al.Langmuir, 2023, 39(10), 3710.
29 Abyaneh E R, Olamaei J, Abedi S M.Sustainability, 2023, 15(15), 11814.
30 Xie G C, Wang Y G.Application of IC, 2005(1), 12 (in Chinese).
谢广超, 王跃刚. 集成电路应用, 2005(1), 12.
[1] 杨菊香, 贾园, 马文建, 李朋娜, 屈颖娟. 互穿网络结构的二氧化硅/环氧树脂复合材料的制备及介电性能研究[J]. 材料导报, 2024, 38(5): 22080082-6.
[2] 孟令欣, 邓伟, 胡思远, 冯嘉唯, 王照盼. Al2O3/PEI复合介质的高温储能特性研究[J]. 材料导报, 2024, 38(22): 23110021-8.
[3] 张鹏伟, 宋惠, 白慧萍, 易剑, 江南, 西村一仁. 太赫兹行波管用金刚石输能窗研究进展[J]. 材料导报, 2024, 38(16): 22120014-9.
[4] 吴妹, 徐晓磊, 李晓, 刘玖红, 于光睿, 段好东, 韩玉玺, 于青, 王忠卫. 甲基取代二芳基氧化膦阻燃改性环氧树脂的研究[J]. 材料导报, 2024, 38(16): 23040213-10.
[5] 王海燕, 咸龙帝, 尚天蓉, 姚佳岐, 燕小斌, 李澜. BT@PANI核壳粒子的绿色制备及PVDF基复合材料的介电性能[J]. 材料导报, 2024, 38(13): 22120173-6.
[6] 章国涛, 高艳, 刘书利, 孟德喜, 高娜燕, 郑勇. 低介电损耗Ca1-xSrxMgSi2O6微波介质陶瓷的结构和介电性能[J]. 材料导报, 2023, 37(4): 21080295-5.
[7] 宋恩鹏, 靳权, 刘钊, 陈奋华, 蔡克. 自组装烧结法可控合成钛酸钡微纳米陶瓷的效果和适用范围研究[J]. 材料导报, 2023, 37(17): 22010205-6.
[8] 苏宇, 翁凌, 王小明, 关丽珠, 张笑瑞. 核壳结构SiCNWs@SiO2/PVDF复合材料的制备与介电储能特性[J]. 材料导报, 2023, 37(11): 22010127-11.
[9] 姬旭敏, 孙滨洲, 李聪, 胡澎浩. 利用多层薄膜技术提升聚合物基复合材料介电储能密度的研究进展[J]. 材料导报, 2022, 36(9): 20080247-7.
[10] 胡时, 蔡海兵, 马祖桥, 袁助, 丁祖德. 不同加载速率下饱水高延性喷射混凝土的单轴压缩试验[J]. 材料导报, 2022, 36(8): 21090227-10.
[11] 汪叶舟, 曲绍宁, 尹训茜. 填充型聚合物基介电储能复合材料的研究进展[J]. 材料导报, 2022, 36(4): 20080076-7.
[12] 刘锦, 梁炳亮, 张建军, 艾云龙. 微波烧结微波介质陶瓷的研究进展[J]. 材料导报, 2022, 36(3): 20040130-10.
[13] 关嘉怡, 张刚华, 曾涛, 白建峰, 顾卫华. 利用高压手段调控铁电材料结构与性能的研究进展[J]. 材料导报, 2022, 36(12): 20110057-8.
[14] 唐滋励, 夏浚淞, 尹航, 傅光辉, 艾细彤, 唐海龙. 熔盐辅助制备钛酸锶钡纳米粉体及其介电性能[J]. 材料导报, 2022, 36(11): 21010142-5.
[15] 杨俊, 何创创, 罗小芳. 短切玻纤含量对TiO2/PTFE复合材料性能的影响[J]. 材料导报, 2021, 35(z2): 570-572.
[1] LIU Diqiang, JIA Jiangang, GAO Changqi, WANG Jianhong. Preparation of Raney-Ni/Al2O3 Powder Composites by De-alloying of Mechanochemical Synthesized Ni2Al3/Al2O3 Powders[J]. Materials Reports, 2018, 32(6): 957 -960 .
[2] . Effect of Annealing on Crystalline Structure and Low-temperature Toughness of
Polypropylene Random Copolymer Dedicated Pipe Materials
[J]. Materials Reports, 2017, 31(4): 65 -69 .
[3] YAN Xin, HUI Xiaoyan, YAN Congxiang, AI Tao, SU Xinghua. Preparation and Visible-light Photocatalytic Activity of Graphite-like Carbon Nitride Two-dimensional Nanosheets[J]. Materials Reports, 2017, 31(9): 77 -80 .
[4] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[5] HUANG Jianfeng, WANG Caiwei, LI Jiayin, CAO Liyun, ZHU Dongyue, XI Ting. Advances in Carbon-based Anode Materials for Sodium Ion Batteries[J]. Materials Reports, 2017, 31(21): 19 -23 .
[6] WANG Bin, ZHANG Lele, DU Jinjing, ZHANG Bo, LIANG Lisi, ZHU Jun. Applying Electrothermal Reduction Method to the Preparation of V-Ti-Cr-Fe Alloys Serving as Hydrogen Storage Materials[J]. Materials Reports, 2018, 32(10): 1635 -1638 .
[7] GAO Wei, ZHAO Guangjie. Synergetic Oxidation Modification of Wooden Activated Carbon Fiber with Nitric Acid and Ceric Ammonium Nitrate[J]. Materials Reports, 2018, 32(9): 1507 -1512 .
[8] ZHANG Tiangang,SUN Ronglu,AN Tongda,ZHANG Hongwei. Comparative Study on Microstructure of Single-pass and Multitrack TC4 Laser Cladding Layer on Ti811 Surface[J]. Materials Reports, 2018, 32(12): 1983 -1987 .
[9] HAN Zhiyong, QIU Zhenzhen, SHI Wenxin. Effect of Surface Modification of Bonding Layers by High Current Pulsed Electron Beam on Thermal Shock Failure and Residual Stress of Thermal Barrier Coatings[J]. Materials Reports, 2018, 32(24): 4303 -4308 .
[10] YUAN Teng, LIANG Bin, HUANG Jiajian, YANG Zhuohong, SHAO Qinghui. Effect of Shell Thickness on Morphology and Opacity Ability of Hollow Styrene
Acrylic Latex Particles
[J]. Materials Reports, 2019, 33(4): 724 -728 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed