Please wait a minute...
材料导报  2025, Vol. 39 Issue (13): 24050145-8    https://doi.org/10.11896/cldb.24050145
  金属与金属基复合材料 |
30CrNi2MoVA钢等离子体渗氮层表征及其对宏观力学性能的影响
解光瑞, 杨盼盼, 孙吉, 杨阳*, 丁红宇, 刘兴光, 张世宏*
安徽工业大学先进金属材料绿色制备与表面技术教育部重点实验室,安徽 马鞍山 243002
Characterization of Plasma Nitriding Layer on 30CrNi2MoVA Steel and Its Effect on Macroscopic Mechanical Properties
XIE Guangrui, YANG Panpan, SUN Ji, YANG Yang*, DING Hongyu, LIU Xingguang, ZHANG Shihong*
Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials, Ministry of Education, Anhui University of Technology, Maanshan 243002, Anhui, China
下载:  全 文 ( PDF ) ( 54147KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用辉光等离子体渗氮技术在30CrNi2MoVA钢表面制备渗氮层,提高30CrNi2MoVA钢的表面硬度和抗磨损性能,同时研究渗氮温度对样件韧性和拉伸性能的影响。利用扫描电子显微镜、X射线衍射仪、摩擦磨损设备、万能试验机等分析渗氮层的微观组织、摩擦学性能、室温以及高温力学性能。结果表明:30CrNi2MoVA钢经400、450、500 ℃渗氮8 h后,其表面获得了不同厚度且组织成分均匀的渗氮层;经渗氮后,500 ℃下表面硬度最高为816HV0.1;450 ℃下钢的抗拉强度为698.7 MPa,屈服强度为575.4 MPa;450 ℃下渗氮层的磨损率较30CrNi2MoVA钢基体的下降了87%。通过等离子体渗氮可以获得高硬度、组织均匀、冶金结合的渗氮层,显著改善了30CrNi2MoVA钢的抗磨损能力;同时,渗氮处理能略微提升样件的拉伸性能,但是对样件的塑性和韧性有不利影响。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
解光瑞
杨盼盼
孙吉
杨阳
丁红宇
刘兴光
张世宏
关键词:  等离子体渗氮  耐磨性  拉伸性能  冲击韧性    
Abstract: Plasma nitriding was applied to create a nitrided layer on the surface of 30CrNi2MoVA steel. The effect of nitriding temperature on the toughness and tensile properties of the samples were investigated. The morphology of the surface cross-section of the nitrided samples was observed by scanning electron microscopy. The elemental distribution and phase composition of the nitrided layers were analyzed using EDS and XRD. The tribological properties, including the coefficient of friction, wear rate, and abrasion morphology of the nitrided layers were characte-rized. The tensile properties of the samples were assessed under room temperature and high temperature by a universal testing machine. The results indicate that after 8 hours of nitriding at 400, 450, and 500 ℃, the surface of 30CrNi2MoVA steel obtained nitrided layers of varying thicknesses with uniform microstructural composition. After nitriding, the maximum surface hardness at 500 ℃ was 816 HV0.1; the tensile strength of the steel at 450 ℃ was 698.7 MPa, and the yield strength was 575.4 MPa. At 450 ℃, the wear rate of the nitrided layer decreased by 87% compared to the base material of 30CrNi2MoVA steel. Plasma nitriding can produce high-hardness, uniformly structured, metallurgically bonded nitrided layers, significantly improving the wear resistance of 30CrNi2MoVA steel. Simultaneously, nitriding treatment slightly enhances the tensile properties of the specimens but has an adverse effect on their ductility and toughness.
Key words:  plasma nitriding    wear resistance    tensile property    impact toughness
出版日期:  2025-07-10      发布日期:  2025-07-21
ZTFLH:  TG156.8  
基金资助: 安徽省重点研发计划(2022h11020017);安徽省高校优秀青年科研项目(2023AH030027);安徽省自然科学基金(2208085QE152)
通讯作者:  *杨阳,安徽工业大学先进金属材料绿色制备与表面技术教育部重点实验室副教授、博士研究生导师。目前研究方向:金属表面渗镀复合技术、功能/防护一体化涂层技术、表界面第一性原理计算。yangyounghit@163.com
张世宏,安徽工业大学二级教授、博士研究生导师。材料科学与工程学科带头人、先进金属材料绿色制备与表面技术教育部重点实验室主任,研究方向为金属表面涂层。shzhang@ahut.edu.cn   
作者简介:  解光瑞,现为安徽工业大学材料科学与工程学院硕士研究生,在张世宏教授和杨阳副教授的指导下进行研究。目前主要研究领域为金属表面强化。
引用本文:    
解光瑞, 杨盼盼, 孙吉, 杨阳, 丁红宇, 刘兴光, 张世宏. 30CrNi2MoVA钢等离子体渗氮层表征及其对宏观力学性能的影响[J]. 材料导报, 2025, 39(13): 24050145-8.
XIE Guangrui, YANG Panpan, SUN Ji, YANG Yang, DING Hongyu, LIU Xingguang, ZHANG Shihong. Characterization of Plasma Nitriding Layer on 30CrNi2MoVA Steel and Its Effect on Macroscopic Mechanical Properties. Materials Reports, 2025, 39(13): 24050145-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24050145  或          https://www.mater-rep.com/CN/Y2025/V39/I13/24050145
1 Wang F, Chen Y C, Di C C, et al. Hot Working Technology, 2015, 44(20), 142 (in Chinese).
王斐, 陈永才, 狄长春, 等. 热加工工艺, 2015, 44(20), 142.
2 Guo C A, Zhou F, Hu M, et al. Materials Reports, 2018, 32(18), 3213 (in Chinese).
郭策安, 周峰, 胡明, 等. 材料导报, 2018, 32(18), 3213.
3 Shukla P, Awasthi S, Ramkumar J, et al. Journal of Alloys and Compounds, 2018, 768, 1039.
4 Wang R. New Technology & New Process, 2008, (7), 68 (in Chinese).
王嵘. 新技术新工艺, 2008, (7), 68.
5 Luo D F. Metal Heat Treatment, 2022, 47(7), 227 (in Chinese).
罗德福. 金属热处理, 2022, 47(7), 227.
6 Liu H J, Han X, Chen J. Hot Working Technology, 2024, 53(2), 24.
刘海建, 韩笑, 陈杰. 热加工工艺, 2024, 53(2), 24.
7 Luo G D, Zheng Z, Ning L K, et al. Engineering Failure Analysis, 2020, 111, 104455.
8 Singh S K, Naveen C, Venkat S Y, et al. Materials Today, Proceedings, 2019, 18, 2717.
9 Shin W S, Sim A, Baek S, et al. Surface and Coatings Technology, 2021, 410, 126956.
10 Sun J, Li J, Xie J M, et al. Journal of Materials Research and Technology, 2022, 19, 4804.
11 Liu Z Y, Wang X W, Sun J Q, et al. Transactions of Materials and Heat Treatment, 2019, 40(3), 148 (in Chinese).
刘仲玉, 王兴伟, 孙金全, 等. 材料热处理学报, 2019, 40(3), 148.
12 Zhu Y G, Lu G L, Zang Z H. Foundry, 2023, 72(7), 805 (in Chinese).
朱永刚, 吕刚磊, 张智辉. 铸造, 2023, 72(7), 805.
13 DEZ-300 SBR rifle from DEZ tactical weapons company in the United States. Small Arms, 2015(15), 28 (in Chinese).
美国DEZ战术武器公司DEZ-300 SBR步枪. 轻兵器, 2015, (15), 28.
14 Wang R, Ye S G, Wang K. Fundamentals of National Defense Technology, 2010(6), 49 (in Chinese).
王嵘, 叶书贵, 王康. 国防技术基础, 2010(6), 49.
15 Zhao F S, Li Y K, Bi Y J, et al. Rechuli Jishu Yu Zhuangbei, 2021, 42(4), 54 (in Chinese).
赵福帅, 李永康, 毕永洁, 等. 热处理技术与装备, 2021, 42(4), 54.
16 Chen H Y. Process, structure and performance of surface nanocrystallization and ion nitriding on TC4 titanium alloy. Master’s Thesis, South China University of Technology, China, 2020 (in Chinese).
陈涵悦. TC4钛合金表面纳米化与离子渗氮的工艺、结构与性能. 硕士学位论文, 华南理工大学, 2020.
17 Zhu Q Y, Li S X, Zhao S F, et al. Hot Working Technology, 2019, 48(10), 35 (in Chinese).
朱全意, 李双喜, 赵少甫, 等. 热加工工艺, 2019, 48(10), 35.
18 Liu D, Shen Y L, Wang E L, et al. Coatings, 2023, 13(9), 1626.
19 Wei A, Hu J T, Li Y Y, et al. Engineering Failure Analysis, 2024, 157, 107948.
20 Xue Y Q, Shi Y, Li Y D, et al. Hot Working Technology, 2011, 40(16), 185 (in Chinese).
薛育强, 史颖, 李耀东, 等. 热加工工艺, 2011, 40(16), 185.
21 Liu Y R, Fischer T E, Dent A. Surface and Coatings Technology, 2003, 167(1), 68.
22 Li J, Tao X, Wu W P, et al. Journal of Materials Science, 2023, 58(5), 2294.
23 Liu J Q, Wang X F, Liu K Z. Materials Reports, 2023, 37(14), 164 (in Chinese).
刘嘉琴, 王晓方, 刘柯钊. 材料导报, 2023, 37(14), 164.
24 Li J, Sun L, Xie J M, et al. ACS Applied Materials & Interfaces, 2023, 15(42), 49814.
25 Fu K Y, Wang S J, Pan M M, et al. Heat Treatment of Metals, 2018, 43(9), 118 (in Chinese).
付柯焴, 王守晶, 潘明明, 等. 金属热处理, 2018, 43(9), 118.
26 Hosseini S R, Ahmadi A. Vacuum, 2013, 87, 30.
27 Yang Y, Yan M F, Zhang Y X, et al. Surface and Coatings Technology, 2016, 304, 142.
28 Yang W J, Zhang M, Zhao Y H, et al. Surface and Coatings Technology, 2016, 298, 64.
29 Zhao Y H, Yang W J, Guo C Q, et al. Acta Metallurgica Sinica (English Letters), 2015, 28(8), 984.
30 Li Y, He Y Y, Xiu J J, et al. Surface and Coatings Technology, 2017, 329, 184.
31 Sun L, Cao C, Du J T, et al. Surface Technology, 2023, 52(1), 421 (in Chinese).
孙璐, 曹驰, 杜金涛, 等. 表面技术, 2023, 52(1), 421.
32 Nohava J, Dessarzin P, Karvankova P, et al. Tribology International, 2015, 81, 231.
33 Li Y, He Y Y, Zhang S Z, et al. Vacuum, 2017, 146, 1.
34 Farokhzadeh K, Edrisy A. Materials Science and Engineering:A, 2015, 620, 435.
35 Li Y H. Investigation on the effect of QPQ technology on mechanic pro-perty and corrosion resistance of the materials. Ph. D. Thesis, Jiangsu University, China, 2007 (in Chinese).
李远辉. QPQ技术对材料力学性能和抗蚀性影响的研究. 博士学位论文, 江苏大学, 2007.
36 Zong X M, Gao F, Quan S J, et al. Bearing, 2020(11), 40 (in Chinese).
宗晓明, 高飞, 权思佳, 等. 轴承, 2020(11), 40.
37 Farghali A, Aizawa T. Materials Transactions, 2017, 58(4), 697.
38 Liu H Q. Investigation on tensile and high-cycle fatigue properties of piston aluminum alloy. Master’s Thesis, University of Science and Techno-logy of China, China, 2020 (in Chinese).
刘海全. 活塞铝合金拉伸与高周疲劳性能研究. 硕士学位论文, 中国科学技术大学, 2020.
39 Xu Y, Zeng X C, Tian Y Q, et al. Journal of Plasticity Engineering, 2021, 28(7), 124 (in Chinese).
徐勇, 曾祥成, 田亚强, 等. 塑性工程学报, 2021, 28(7), 124.
40 Zhang J, Miao C H, Qin X L, et al. Transactions of Materials and Heat Treatment, 2022, 43(7), 129 (in Chinese).
张健, 缪春辉, 秦小龙, 等. 材料热处理学报, 2022, 43(7), 129.
41 Xiao X P, Liu R Q, Chen H M, et al. Material Reports, 2015, 29(10), 148 (in Chinese).
肖翔鹏, 柳瑞清, 陈辉明, 等. 材料导报, 2015, 29(10), 148.
42 Shan Y Q, Zhang Y M, Zhang C M, et al. Transactions of Materials and Heat Treatment, 2024, 45(1), 95 (in Chinese).
单运启, 张彦敏, 张朝民, 等. 材料热处理学报, 2024, 45(1), 95.
[1] 高峰, 郭策安, 张健. 身管内壁铬钽及其合金涂层研究进展[J]. 材料导报, 2025, 39(7): 24010200-8.
[2] 焦继军, 曹睿, 李义民, 王丛元, 何伟平, 闫英杰. 焊后热处理对Q690高强钢焊缝金属冲击韧性的影响[J]. 材料导报, 2025, 39(4): 24010076-8.
[3] 张泽疆, 李新梅, 朱春金, 李航, 杨定力. 纳米TiB2对CoCrFeNiSi高熵合金涂层耐磨与耐蚀性能的影响[J]. 材料导报, 2025, 39(3): 23090210-9.
[4] 万福程, 梁继超, 于爱华, 张嘉振, 路新. 钛涂层制备与后处理工艺及应用研究进展[J]. 材料导报, 2025, 39(2): 24010131-9.
[5] 顾建, 刘敬华, 王秀龙, 刘胜春, 司佳钧, 王欣欣. Mg含量对粉末渗锌层组织、耐磨性和耐蚀性的影响[J]. 材料导报, 2025, 39(12): 24040189-7.
[6] 申爱琴, 陈荣伟, 郭寅川, 范建航, 戴晓倩, 丑涛. 季冻区纳米SiO2改性SAP路面混凝土的耐磨性[J]. 材料导报, 2024, 38(7): 23010093-6.
[7] 李文清, 曹睿, 杨飞, 徐晓龙, 毛兴贵, 蒋勇, 闫英杰. 影响P91耐热钢焊缝金属冲击韧性的因素分析[J]. 材料导报, 2024, 38(3): 22080097-5.
[8] 张雷, 龙伟民, 樊志斌, 都东, 刘大双, 孙志鹏, 李宇佳, 尚勇. CuTi对Ti-6Al-4V钛合金表面金刚石/AlSi复合钎涂层组织与耐磨性能的影响[J]. 材料导报, 2024, 38(21): 23080114-4.
[9] 李文清, 马景平, 曹睿, 徐晓龙, 杨飞, 毛兴贵, 蒋勇, 闫英杰. P91钢焊缝金属碳化物聚集程度的差异对焊缝金属冲击韧性的影响[J]. 材料导报, 2024, 38(20): 23090208-7.
[10] 曹睿, 王恒霖, 秦巍, 刘少尊, 周双双, 刘一波, 王铁军, 闫英杰. FeCrAl合金管TIG焊焊接接头的组织及性能[J]. 材料导报, 2024, 38(2): 22040211-5.
[11] 李力敏, 党莹樱, 黄锦阳, 刘鹏, 李沛, 鲁金涛, 袁勇. 长期时效对镍铁基高温合金组织和冲击韧性的影响[J]. 材料导报, 2024, 38(18): 23050036-6.
[12] 高吉昌, 门秀花, 姜帅, 付秀丽, 蒋振峰, 李艳. 高铬铸铁叶片堆焊工艺研究进展[J]. 材料导报, 2024, 38(17): 23050109-9.
[13] 王婷, 胡斌, 王文琴, 王非凡. 微弧火花沉积Zr基非晶涂层的组织及性能[J]. 材料导报, 2024, 38(16): 22090308-6.
[14] 朱志彬, 蒋丽, 李艳辉, 张伟. 高熵复合材料微观结构、力学性能及耐磨性研究进展[J]. 材料导报, 2024, 38(14): 23050131-12.
[15] 俞伟元, 董鹏飞, 吴保磊. 超音速火焰喷涂氧燃比对铁基非晶涂层性能的影响[J]. 材料导报, 2024, 38(12): 22120200-6.
[1] JIN Qinglin, WANG Yang, CAO Lei, SONG Qunling. Effect of Nitriding in Mushy Zone on the Nitrogen Content and Solidification Transformation of Cr10Mn9Ni0.7 Alloy[J]. Materials Reports, 2018, 32(4): 579 -583 .
[2] WANG Shengmin, ZHAO Xiaojun, HE Mingyi. Research Status and Development of Mechanical Plating[J]. Materials Reports, 2017, 31(5): 117 -122 .
[3] HE Yuandong, SUN Changzhen, MAO Weiguo, MAO Yiqi, ZHANG Honglong, CHEN Yanfei, PEI Yongmao, FANG Daining. Measurement of Transverse Piezoelectric Coefficients of Pb(Zr0.52Ti0.48)O3 Thin Films by a Mechano-electrical Multiphysics Coupling, Bulge Test Method[J]. Materials Reports, 2017, 31(15): 139 -144 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[6] QI Yaping, LUO Faliang, WANG Kezhi, SHEN Zhiyuan, WU Xuejian, WANG Diran. Effect of TMC-300 on the Performance of PLLA/PPC Alloy[J]. Materials Reports, 2018, 32(10): 1672 -1677 .
[7] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[8] DU Min, SONG Dian, XIE Ling, ZHOU Yuxiang, LI Desheng, ZHU Jixin. Electrospinning in Rechargeable Ion Batteries for High Efficient Energy Storage[J]. Materials Reports, 2018, 32(19): 3281 -3294 .
[9] LIU Xiao, XU Qian, LAI Guanghong, GUAN Jianan, XIA Chunlei, WANG Ziming, CUI Suping. Application Performances and Mechanism of Polycarboxylic Acid in Different Comb-bonded Structures in High-performance Concrete[J]. Materials Reports, 2018, 32(22): 4011 -4015 .
[10] ZHANG Di, YANG Di, XU Cui, ZHOU Riyu, LI Hao, LI Jing, WANG Peng. Study on Mechanism of Highly Effective Adsorption of Bisphenol F by Reduced Graphene Oxide[J]. Materials Reports, 2019, 33(6): 954 -959 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed