Please wait a minute...
材料导报  2025, Vol. 39 Issue (12): 24040189-7    https://doi.org/10.11896/cldb.24040189
  金属与金属基复合材料 |
Mg含量对粉末渗锌层组织、耐磨性和耐蚀性的影响
顾建1,*, 刘敬华2, 王秀龙2, 刘胜春1, 司佳钧1, 王欣欣3
1 中国电力科学研究院有限公司,北京 102401
2 国家电网有限公司,北京 100031
3 国网新疆电力有限公司电力科学研究院,乌鲁木齐 830000
The Effect of Mg Content on the Microstructure, Wear Resistance, and Corrosion Resistance of Powder Zinc Infiltration Layer
GU Jian1,*, LIU Jinghua2, WANG Xiulong2, LIU Shengchun1, SI Jiajun1, WANG Xinxin3
1 China Electric Power Research Institute, Beijing 102401, China
2 State Grid Corporation of China, Beijing 100031, China
3 Electric Power Research Institute of State Grid Xinjiang Electric Power Company Limited, Urumqi 830000, China
下载:  全 文 ( PDF ) ( 30969KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 针对输电线路金具的耐磨性差、耐腐蚀性差以及制造污染大等问题,本工作提出并采用机械能助渗法制备了不同Mg含量的Zn-Mg合金渗锌层。通过使用扫描电子显微镜(SEM)对Zn-Mg合金渗锌层表面进行观察,使用磨损试验机对Zn-Mg合金渗锌层的室温和低温耐磨性能进行测试,使用电化学工作站对Zn-Mg合金渗层的耐腐蚀性能进行测试。结果表明,随着Mg含量的增加,渗锌层表面平整度先增后减,当Mg含量在4%(质量分数,下同)时,渗锌表面最平整;添加Mg后,Zn-Mg合金渗层主要由FeZn10.98相、FeZn6.67相、MgZn2相和Mg2Zn11相组成。当Mg添加量在4%时,Zn-Mg合金渗层具有最好的室温耐磨性能;当Mg含量在6%时,Zn-Mg合金渗层具有最好的低温耐磨性能及耐腐蚀性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
顾建
刘敬华
王秀龙
刘胜春
司佳钧
王欣欣
关键词:  Zn-Mg渗层  粉末渗锌  耐蚀性能  耐磨性能    
Abstract: Aiming at the problems of poor wear and corrosion resistance of transmission line fittings as well as high manufacturing pollution, thiswork proposed to prepare Zn-Mg alloy zinc infiltration layers with different Mg contents by using mechanical energy assisted infiltration method. The surface characteristic of this layer was observed by scanning electron microscope (SEM), the wear resistance of this layer layer was tested by wear tester at both room and low temperatures, and the corrosion resistance of this layer was tested by an electrochemical workstation. The results showed that with the increase of Mg content, the surface flatness of the zinc infiltration layer increased first and then decreased, and when the Mg content was 4%(mass fraction), the zinc-infiltrated surface was the smoothest. After the addition of Mg, the permeability layer of Zn-Mg alloy is mainly composed of FeZn10.98 phase, FeZn6.67 phase, MgZn2 phase and Mg2Zn11 phase. The Zn-Mg alloy zinc infiltration layer has the best room-temperature abrasion-resistant performance when the Mg content is 4%, and it has the best low-temperature abrasion-resistant performance and corrosion-resistant performance when the Mg content is 6%.
Key words:  Zn-Mg infiltration layer    powder zinc infiltration    corrosion resistance performance    wear resistance
出版日期:  2025-06-25      发布日期:  2025-06-19
ZTFLH:  TG174.4  
基金资助: 国家电网公司总部管理科技项目“架空输电线路金具磨损失效行为及质量提升技术研究5108-202218280A-2-123-XG”
通讯作者:  *顾建,博士,中国电力科学研究院有限公司高级工程师,主要研究方向为电力金具材料开发及表面强化。gujian_epri@126.com   
引用本文:    
顾建, 刘敬华, 王秀龙, 刘胜春, 司佳钧, 王欣欣. Mg含量对粉末渗锌层组织、耐磨性和耐蚀性的影响[J]. 材料导报, 2025, 39(12): 24040189-7.
GU Jian, LIU Jinghua, WANG Xiulong, LIU Shengchun, SI Jiajun, WANG Xinxin. The Effect of Mg Content on the Microstructure, Wear Resistance, and Corrosion Resistance of Powder Zinc Infiltration Layer. Materials Reports, 2025, 39(12): 24040189-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24040189  或          https://www.mater-rep.com/CN/Y2025/V39/I12/24040189
1 Chen Y X, Nl Q Z, Lin D Y, et al. Materials Reports, 2016, 30(21), 89 (in Chinese).
陈云翔, 倪清钊, 林德源, 等. 材料导报, 2016, 30(21), 89.
2 Huang L, Song S, Liu C, et al. Journal of Electric Power Science and Technology, 2024, 39(4), 33 (in Chinese).
黄力, 宋爽, 刘闯, 等. 电力科学与技术学报, 2024, 39(4), 33 .
3 Zhou H F, Li F R, Wang H, et al. Surface Technology, 2024,(21)53, 208 (in Chinese).
周海飞, 李凤瑞, 王河, 等. 表面技术, 2024, (21)53, 208.
4 Wang X X, Liu Y, Zhang B, et al. Applied Laser, 2023, 43(3), 59 (in Chinese).
王欣欣, 刘阳, 张博, 等. 应用激光, 2023, 43(3), 59.
5 Hosking N C, Ström M A, Shipway P H, et al. Corrosion Science, 2007, 49(9), 3669.
6 Prosek T, Persson D, Stoulil J, et al. Corrosion Science, 2014(86), 231.
7 Duchoslav J, Steinberger R, Arndt M, et al. Corrosion Science, 2015(91), 311.
8 Yu W G, Li Y P, Liu C L, et al. Corrosion and Protection, 2017, 38(5), 387. (in Chinese).
于武刚, 李远鹏, 刘灿楼, 等. 腐蚀与防护, 2017, 38(5), 387.
9 Ferguson D. Clean Technologies and Environmental Policy, 2006, 8(3), 198.
10 Liang Y, Zhou Y L, Sheng Z Q, et al. China Surface Engineering, 2020, 33(2), 65 (in Chinese).
梁义, 周云龙, 盛忠起, 等. 中国表面工程, 2020, 33(2), 65.
11 Xu C J, Zhang J X, Tian J, et al. Transactions of Materials and Heat Treatment, 2015, 36(7), 205.
徐春杰, 张金皛, 田军, 等. 材料热处理学报, 2015, 36(7), 205.
12 Wu G S, Zeng X Q, Guo X W, et al. Journal of Materials Engineering, 2006(1), 61.
吴国松, 曾小勤, 郭兴伍, 等. 材料工程, 2006(1), 61.
13 Natrup F, Graf W. Thermochemical Surface Engineering of Steels. Oxford:Woodhead Publishing, 2015, pp.737.
14 Liu Q Y, Yue L J, Shen W. Corrosion & Protection, 2022, 43(6), 53 (in Chinese).
刘秋元, 乐林江, 沈伟. 腐蚀与防护, 2022, 43(6), 53.
15 Huang J H. Heat Treatment, 2012, 27(5), 74 (in Chinese).
黄建洪. 热处理, 2012, 27(5), 74.
16 Zhu X P, Zhao M G, Gao H, et al. Electeoplating & Finishing, 2017, 36(23), 1260 (in Chinese).
朱孝培, 赵麦群, 高辉, 等. 电镀与涂饰, 2017, 36(23), 1260.
17 Zhang Y, Yao C W, Zhang L Y, et al. Mechanical Engineering Materials, 2014, 38(11), 60 (in Chinese).
张跃, 姚长文, 张灵宇, 等. 机械工程材料, 2014, 38(11), 60.
18 Chai W, He W P, Wei L J, et al. Environmental Technology, 2022, 40(6), 55 (in Chinese).
柴武, 何卫平, 韦利军, 等. 环境技术, 2022, 40(6), 55.
19 Ma Q H, Fu D H, Dong Z J. China Surface Engineering, 2009, 22(6), 61 (in Chinese).
马青华, 付大海, 董作敬. 中国表面工程, 2009, 22(6), 61.
20 Xu P H, Wang S M, Le L J, et al. China Surface Engineering, 2022, 35(1), 135 (in Chinese).
徐鹏辉, 王胜民, 乐林江, 等. 中国表面工程, 2022, 35(1), 135.
21 Hu Z, Li Y, Lu B, et al. Optics & Laser Technology, 2022, 155, 108449.
22 Zhang G S, Wang W C, Liu T, et al. Hot Working Technology, 2024, 1, DOI:10.14158/j.cnki.1001-3814.20223539 (in Chinese).
张国松, 王文超, 刘涛, 等. 热加工工艺, 2024, 1, DOI:10.14158/j.cnki.1001-3814.20223539.
23 Chen C X, Zuo Y Q, Liu B X, et al. Surface Technology, 2018, 47(12), 166 (in Chinese).
陈翠欣, 左玉强, 刘宝玺, 等. 表面技术, 2018, 47(12), 166.
24 Li Y, Wang K, Fu H, et al. Applied Surface Science, 2022, 585, 152703.
25 Wei A, Tang Y, Tong T, et al. Coatings, 2022, 12(8).
26 Dai X, Xie M, Zhou S, et al. Journal of Alloys and Compounds, 2018(740), 194.
27 Yuan W, Li R, Chen Z, et al. Surface and Coatings Technology, 2021(405), 126582.
28 Xiao M, Wang S M, Wang Z B, et al. Materials Science and Technology, 2024, 32(4), 11(in Chinese).
肖敏, 王胜民, 王志斌, 等. 材料科学与工艺, 2024, 32(4), 11.
29 Ge T, Chen L, Gu P, et al. Optics & Laser Technology, 2022, 150, 107919.
30 Li W L, Xia Y L, Fang Y, et al. Journal of Manufacturing Processes. 2022, 84, 847.
31 Qiu X P, Liu X, Liu Q Y, et al. Chinese Journal of Vacuum Science and Technology, 2019, 39(6), 460.
32 Morishita M, Koyama K, Mori Y. ISIJ International, 1997, 37(1), 55.
33 Niu Z G, Guo P S, Ye H, et al. Journal of Chinese Society for Corrosion and Protection, 2017, 37(4), 347.
牛振国, 郭浦山, 叶宏, 等. 中国腐蚀与防护学报, 2017, 37(4), 347.
34 Xie Y, Wang Z, Hou Z F. Scripta Materialia, 2013, 68(7), 495.
35 Byun J M, Yu J M, Kim D K, et al. Journal of the Korean Institute of Metals and Materials, 2013, 51(6), 413.
[1] 张雷, 龙伟民, 樊志斌, 都东, 刘大双, 孙志鹏, 李宇佳, 尚勇. CuTi对Ti-6Al-4V钛合金表面金刚石/AlSi复合钎涂层组织与耐磨性能的影响[J]. 材料导报, 2024, 38(21): 23080114-4.
[2] 段逸飞, 王建利, 袁满, 王礼营, 杨忠, 李菲, 田皓. 镁锂合金中LPSO相的研究进展[J]. 材料导报, 2024, 38(20): 23020055-10.
[3] 曹晓君, 刘美辰, 杨康, 马义明, 王俊杰, 黎军顽. 可降解铸态Zn-Cu-Sr合金的组织与性能[J]. 材料导报, 2024, 38(18): 23060210-7.
[4] 李红梅, 孟建兵, 于浩洋, 董小娟, 周海安, 战胜杰, 唐友泉. ZnO纳米颗粒掺杂对镍钛合金表面微弧氧化膜层形貌及性能的影响[J]. 材料导报, 2024, 38(13): 22110123-7.
[5] 赵冠琳, 刘树帅, 吴东亭, 王新洪, 邹勇. 元素W与Mo对非晶Ni-P镀层热稳定性和耐腐蚀性能的影响[J]. 材料导报, 2023, 37(7): 21070071-7.
[6] 周维, 樊坤阳, 黄淙, 刘子京, 万维财, 贡太敏. 烧结温度对团聚高温快速烧结WC-10Co-4Cr粉末及其HVOF涂层性能的影响[J]. 材料导报, 2022, 36(6): 20120041-6.
[7] 吕绪明, 江涛, 张云汉, 苑建志, 杨凯, 党博, 张平则. 纯铜表面Ta-W合金层的抗高温氧化及摩擦行为[J]. 材料导报, 2022, 36(23): 22050017-5.
[8] 曾尚武, 郭夏溦, 张磊, 屈帅, 常建伟, 王舒然, 徐德录, 李雅泊. 铁塔用VCI双金属涂层的制备及性能研究[J]. 材料导报, 2020, 34(Z2): 423-428.
[9] 赵静, 王天鹏, 张淮浩. 磁场作用下十二烷基苯磺酸钠对阳极铝箔的缓蚀性能及比电容的影响[J]. 材料导报, 2020, 34(6): 6156-6160.
[10] 宋涛, 杨杰, 赵松海, 尚海涛, 白超超. 石膏基自流平砂浆耐磨性能研究[J]. 材料导报, 2019, 33(Z2): 239-241.
[11] 毕凤琴, 周帮, 王勇. 合金化对不锈钢耐蚀性能影响的研究进展[J]. 材料导报, 2019, 33(7): 1206-1214.
[12] 向红亮, 刘春育, 邓丽萍, 张伟, 任建斌. 固溶温度对节约型双相不锈钢组织及性能的影响[J]. 材料导报, 2019, 33(16): 2759-2764.
[13] 陈玉静, 沙爱民, 胡魁, 刘状壮, 曹世豪, 张华. 青藏地区路用遮热涂层的制备及性能[J]. 材料导报, 2019, 33(14): 2319-2325.
[14] 李振伟, 狄士春. 纳米TiO2微粒对2214铝合金微弧氧化膜微观结构及耐磨性能的影响[J]. 《材料导报》期刊社, 2018, 32(8): 1294-1299.
[15] 肖轶, 徐呈艺, Ryou Min, 曹健. Cr3C2粒径对等离子堆焊铁基合金层组织与耐磨性能的影响[J]. 材料导报, 2018, 32(24): 4329-4333.
[1] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[2] LIU Shuaiyang, WANG Aiqin, LYU Shijing, TIAN Hanwei. Interfacial Properties and Further Processing of Cu/Al Laminated Composite: a Review[J]. Materials Reports, 2018, 32(5): 828 -835 .
[3] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[4] CAO Xiuzhong, ZHAO Bing, HAN Xiuquan, HOU Hongliang, QU Haitao. Research on Deformation Mechanism of SiC Fiber Reinforced Titanium Matrix Composites Subjected to High Temperature Axial Tension[J]. Materials Reports, 2017, 31(8): 88 -93 .
[5] ZHANG Jiaqing, ZHANG Bosi, WANG Liufang, FAN Minghao, XIE Hui, LI Wei. The State of the Art of Combustion Behavior of Live Wires and Cables[J]. Materials Reports, 2017, 31(15): 1 -9 .
[6] LI Xueyun, WANG Hezhong. Optimization and Characterization of TEMPO-Mediated Oxidization of Nanochitin Whiskers[J]. Materials Reports, 2018, 32(10): 1597 -1601 .
[7] LI Beigang, WANG Min. High Efficient Adsorption of Dyes by Fe/CTS/AFA Composite[J]. Materials Reports, 2018, 32(10): 1606 -1611 .
[8] ZHAO Qingchen, WANG Jinlong, ZHANG Yuanliang, SHEN Yihong, LIU Shujie. Fatigue Behavior and Fatigue Life for FV520B-I at Different Loading Frequencies[J]. Materials Reports, 2018, 32(16): 2837 -2841 .
[9] ZHOU Chao, WANG Hui, OUYANG Liuzhang, ZHU Min. The State of the Art of Hydrogen Storage Materials for High-pressure Hybrid Hydrogen Vessel[J]. Materials Reports, 2019, 33(1): 117 -126 .
[10] WANG Huifen, LIU Gang, CAO Kangli, YANG Biqi, XU Jun, LAN Shaofei, ZHANG Lixin. Development Status of Carbon Nanotube Materials and Their Application Prospects in Spacecraft[J]. Materials Reports, 2019, 33(z1): 78 -83 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed