Please wait a minute...
材料导报  2025, Vol. 39 Issue (12): 24030246-9    https://doi.org/10.11896/cldb.24030246
  金属与金属基复合材料 |
稀土元素对微电子封装互连材料组织与性能的影响
苏子龙1,2, 尹立孟1,3,4,*, 陈玉华5, 张鹤鹤4, 张龙4, 张丽萍4,6
1 新疆大学机械工程学院,乌鲁木齐 830049
2 北京中科新微特科技开发股份有限公司,北京 100012
3 重庆三峡学院机械工程学院,重庆 404020
4 重庆科技大学机械与智能制造学院,重庆 401331
5 南昌航空大学材料科学与工程学院,南昌 330063
6 北京航空航天大学材料科学与工程学院,北京 100191
Effect of Rare Earth Elements on Microstructure and Properties of Interconnected Materials for Microelectronic Packaging
SU Zilong1,2, YIN Limeng1,3,4,*, CHEN Yuhua5, ZHANG Hehe4, ZHANG Long4, ZHANG Liping4,6
1 School of Mechanical Engineering, Xinjiang University, Urumqi 830049, China
2 Beijing Zhongke New Micro Technology Development Co., Ltd., Beijing 100012, China
3 School of Mechanical Engineering, Chongqing Three Gorges University, Chongqing 404020, China
4 School of Mechanical and Intelligent Manufacturing, Chongqing University of Science & Technology, Chongqing 401331, China
5 School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China
6 School of Materials Science and Engineering, Beihang University, Beijing 100191, China
下载:  全 文 ( PDF ) ( 14003KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着微电子封装无铅化的发展,封装互连材料的综合性能需要进一步提升。通过合金化改性来提升材料性能是一种行之有效的方法,在合金化改性中稀土材料发挥了极其重要的作用。本文重点介绍了稀土元素对电子封装互连材料的影响,主要总结讨论了添加不同种类和不同含量的稀土元素对Au、Cu和Ag键合引线,SnAgCu系、SnZn系和Sn-Bi系等无铅钎料,Sn-Ce镀层和Sn-RE合金显微组织与力学性能的影响,最后总结了稀土元素在微电子封装互连材料中发挥的作用以及存在的不足,并对电子封装互连材料中添加微量稀土元素的研究进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
苏子龙
尹立孟
陈玉华
张鹤鹤
张龙
张丽萍
关键词:  稀土元素  电子封装  互连材料  键合引线  无铅钎料  锡基镀层/合金  显微组织  力学性能    
Abstract: With the development of lead-free microelectronic packaging, the comprehensive properties of packaging interconnected materials need to be further improved. It is an effective method to enhance the properties of materials by alloying modification, and rare earth materials play an important role in alloying modification. This paper focuses on the effects of rare earth elements on interconnected electronic packaging materials. The effects of rare earth elements on the microstructure and properties of Au, Cu, and Ag bonding wires, SnAgCu, SnZn and other lead-free solders, Sn-Ce coating, and Sn-RE alloy are summarized and discussed. Finally, the roles and shortcomings of rare earth elements in microelectronic packaging interconnection materials are summarized, and the research on adding trace rare earth elements in electronic packaging interconnect materials is prospected.
Key words:  rare earth element    electronic packaging    interconnected material    bond wire    lead free solder    tin coating/alloy    microstructure    mechanical property
出版日期:  2025-06-25      发布日期:  2025-06-19
ZTFLH:  TB31  
基金资助: 国家自然科学基金(52175288;U24A20117);重庆市自然科学基金创新发展联合基金重点项目(CSTB2023NSCQ-LZX0002);新疆大学优秀研究生创新项目(XJDX2025YJS093)
通讯作者:  *尹立孟,博士,新疆大学、重庆三峡学院、重庆科技大学教授,博士研究生导师。目前主要从事先进焊接与微连接理论及技术、电子封装材料和可靠性等方面的研究。yeenlm@cqust.edu.cn   
作者简介:  苏子龙,博士研究生。目前主要从事电子封装材料及其可靠性研究。
引用本文:    
苏子龙, 尹立孟, 陈玉华, 张鹤鹤, 张龙, 张丽萍. 稀土元素对微电子封装互连材料组织与性能的影响[J]. 材料导报, 2025, 39(12): 24030246-9.
SU Zilong, YIN Limeng, CHEN Yuhua, ZHANG Hehe, ZHANG Long, ZHANG Liping. Effect of Rare Earth Elements on Microstructure and Properties of Interconnected Materials for Microelectronic Packaging. Materials Reports, 2025, 39(12): 24030246-9.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24030246  或          https://www.mater-rep.com/CN/Y2025/V39/I12/24030246
1 Lo J C, Jia B, Liu Z, et al. Soldering & Surface Mount Technology, 2008, 20(2), 30.
2 Gomes J, Mayer M, Lin B. Microelectronics Reliability, 2015, 55(3-4), 602.
3 Yu C M, Lai K K, Chen K S, et al. IEEE Access, 2020, 8, 106075.
4 Li S, Wang X, Liu Z, et al. Journal of Materials Science:Materials in Electronics, 2020, 31, 9076.
5 Jaffery H A, Sabri M F M, Said S M, et al. Journal of Alloys and Compounds, 2019, 810, 151925.
6 Satizabal L M, Costa D, Moraes P B, et al. Materials Chemistry and Physics, 2019, 223, 410.
7 Wu C, Yu D, Law C, et al. Materials Science and Engineering R:Reports, 2004, 44(1), 1.
8 Yang W, Du Z, Yu S, et al. Materials, 2019, 12(22), 3731.
9 Xiao D, Wang J, Ding D, et al. Journal of Alloys and Compounds, 2003, 352(1-2), 84.
10 Zhou H, Zhang Y, Cao J, et al. Micromachines, 2023, 14(2), 432.
11 Xue P, He P, Long W M, et al. Transactions of the China Welding Institution, 2021, 42(4), 1 (in Chinese).
薛鹏, 何鹏, 龙伟民, 等. 焊接学报, 2021, 42(4), 1.
12 Yue J, Xiao Y, Li Y, et al. Organic Electronics, 2017, 43, 121.
13 Manoharan S, Patel C, Mccluskey P. In:ASME 2017 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems. California, 2017, pp.74286.
14 Zou Y S, Gan C L, Chung M H, et al. Journal of Materials Science:Materials in Electronics, 2021, 32(23), 27133.
15 Liang S, Huang F, Peng C, et al. Jorunal of Functional Materials, 2019, 50, 5048.
16 Chen X. Silicon, 2014, 7, 152.
17 Schneider-Ramelow M, Ehrhardt C. Microelectronics Reliability, 2016, 63, 336.
18 Chuang T H, Lin H J, Chuang C H, et al. Journal of Alloys and Compounds, 2014, 615, 891.
19 Xie Q, Long K, Lu D, et al. IEEE Transactions on Industrial Electronics, 2021, 69(11), 11807.
20 Xie S, Lin P, Yao Q. Journal of Physics:Conference Series, 2021, 1907(1), 012021.
21 März B, Graff A, Klengel R, et al. Microelectronics Reliability, 2014, 54(9-10), 2000.
22 Ning Y. Gold Bulletin, 2005, 38, 3.
23 Yang G X, Guo Y C, Kong J W, et al. Precious Metals, 2011, 32(1), 16 (in Chinese).
杨国祥, 郭迎春, 孔建稳, 等. 贵金属, 2011, 32(1), 16.
24 Li Y L, Wang Y G, Wu B Y. Journal of Materials and Metallurgy, 1999, 1(4), 296 (in Chinese).
李英龙, 王玉贵, 吴宝元. 材料与冶金学报, 1999, 1(4), 296.
25 Zhang G. New Technology & New Products of China, 2021(10), 70 (in Chinese).
张弓. 中国新技术新产品, 2021(10), 70.
26 曹军, 范俊玲, 李艳梅, 等. 中国专利, CN104278169A, 2013.
27 倪海霞. 中国专利, CN108149060A, 2018
28 房跃波, 郑志法, 郑康定. 中国专利, CN200610154485, 2007.
29 Yang F, Zhang X D, Fang F. IOP Conference Series:Materials Science and Engineering. 2022, 1249(1), 012057.
30 李细江. 中国专利, CN202010885508. X, 2022.
31 韩连恒, 王岩, 刘炳磊, 等. 中国专利, CN110718526A, 2020.
32 王娟, 曹凯, 刘实, 等. 中国专利, CN109473413A, 2019.
33 Chen C H, Chuang T H. Microelectronics Reliability, 2022, 137, 114786.
34 Hsueh H W, Hung F Y, Lui T S, et al. Microelectronics Reliability, 2014, 54(11), 2564.
35 徐云管, 李湘平, 彭庶瑶, 等. 中国专利, CN103779308A, 2014.
36 林良. 中国专利, CN102770468A, 2018.
37 Zhao M, Zhang L, Xiong M Y. Materials Reports, 2019, 33(8), 2467 (in Chinese).
赵猛, 张亮, 熊明月. 材料导报, 2019, 33(8), 2467.
38 Fan J L, Liu Z Y, Li Y W, et al. Materials Reports, 2018, 32(21), 3774 (in Chinese).
樊江磊, 刘占云, 李育文, 等. 材料导报, 2018, 32(21), 3774.
39 Chen Z G. Study on creep behavior of SnAgCuRE soldered joints. Ph. D. Thesis, Beijing University of Technology, China, 2003 (in Chinese).
陈志刚. SnAgCuRE钎焊接头蠕变行为的研究. 博士学位论文, 北京工业大学, 2003.
40 Zhang L, Xue S B, Gao L L, et al. Journal of Materials Science:Materials in Electronics, 2009, 20, 1193.
41 Zhang L, Xue S B, Gao L L, et al. Microelectronic Engineering, 2011, 88(9), 2848.
42 Zhang L, Xue S B, Zeng G, et al. Journal of the Chinese Rare Earth Society, 2009, 27(2), 246 (in Chinese).
张亮, 薛松柏, 曾广, 等. 中国稀土学报, 2009, 27(2), 246.
43 Zhao X Y, Zhao M Q, Cui X Q, et al. Transactions of Nonferrous Metals Society of China, 2007, 17(4), 805.
44 Zhang L, Xue S B, Gao L L, et al. Transactions of Nonferrous Metals Society of China, 2010, 20(3), 412.
45 Wang Y, Zhao X C, Liu Y, et al. Rare Metals, 2021, 40, 714.
46 Dudek M, Sidhu R, Chawla N, et al. Journal of Electronic Materials, 2006, 35, 2088.
47 Dudek M, Chawla N. Materials Characterization, 2008, 59(9), 1364.
48 Aamir M, Tolouei-Rad M, Din I U, et al. Soldering & Surface Mount Technology, 2019, 31(4), 250.
49 Gao L L, Xue S B, Zhang L, et al. Journal of Materials Science:Materials in Electronics, 2010, 21, 910.
50 Gao L L, Xue S B, Zhang L, et al. Journal of Materials Science:Materials in Electronics, 2010, 21, 643.
51 Liu M, Xian A. Science China Technological Sciences, 2011, 54, 1546.
52 Hao H, Xu G, Song Y, et al. Journal of Electronic Materials, 2012, 41, 184.
53 Liu M, Xian A P. Journal of Electronic Materials, 2009, 38, 2353.
54 Li Z, Mikula A, Qiao Z. Monatshefte für Chemie/Chemical Monthly, 2005, 136, 1835.
55 Lin H J, Chuang T H. Journal of Electronic Materials, 2010, 39, 200.
56 Lin H J, Chuang T H. Materials Letters, 2010, 64(4), 506.
57 Wang W. Preparation and research of lead-free solder Sn-Zn-xLa. Master’s Thesis, Fudan University, China, 2008 (in Chinese).
王炜. 无铅焊料Sn-Zn-xLa的制备及研究. 硕士学位论文, 复旦大学, 2008.
58 Zhou J. Investigation on low temperature Sn-Zn base lead-free alloys. Ph. D. Thesis, Southeast University, China, 2006 (in Chinese).
周健. 低熔点Sn-Zn系无铅焊料研究. 博士学位论文, 东南大学, 2006.
59 Chuang T H, Lin H J. Journal of Electronic Materials, 2009, 38, 420.
60 Chen W, Xue S, Journal of Materials Science:Materials in Electronics, 2010, 21, 719.
61 Wang H, Xue S, Zhao F, et al. Rare Metals, 2009, 28, 600.
62 Wang H, Xue S, Zhao F, et al. Journal of Materials Science:Materials in Electronics, 2010, 21, 111.
63 Xiao Z X. Effect of Pr on the microstructure and properties of Sn-9Zn lead-free solder. Master’s Thesis, Nanjing University of Aeronautics and Astronautics, China, 2011 (in Chinese).
肖正香. 稀土Pr对Sn-9Zn无铅钎料组织和性能的影响. 硕士学位论文, 南京航空航天大学, 2011.
64 Xue P, Xue S B, Shen Y F, et al. Soldering & Surface Mount Technology, 2012, 24(4), 280.
65 Xue P, Xue S B, Shen Y F, et al. Transactions of the China Welding Institution, 2011, 32(8), 53 (in Chinese).
薛鹏, 薛松柏, 沈以赴, 等. 焊接学报, 2011, 32(8), 53.
66 Hu Y H, Xue S B, Wang H, et al. Journal of Materials Science:Materials in Electronics, 2011, 22, 481.
67 Dong W, Shi Y, Xia Z, et al. Journal of Electronic Materials, 2008, 37, 982.
68 Shiue Y Y, Chuang T H. Journal of Alloys and Compounds, 2010, 491(1-2), 610.
69 Liu X, Huang M, Wu C M L, et al. Journal of Materials Science:Materials in Electronics, 2010, 21, 1046.
70 Sharma A, Srivastava A K, Lee K, et al. Metals and Materials International, 2019, 25, 1027.
71 Wu C P. Influences of rare earth additions on the microstructure and interfacial reaction of SnBi solder alloys. Master’s Thesis, Chongqing University, China, 2011 (in Chinese).
吴翠平. 稀土元素的添加对SnBi系焊料合金微观组织及界面反应的影响. 硕士学位论文, 重庆大学, 2011.
72 Zhang L, Yang W, Feng J, et al. Journal of Materials Research and Technology, 2023, 26, 1062.
73 Zeng X, Liu Y, Zhang J, et al. Journal of Materials Science:Materials in Electronics, 2020, 31, 16437.
74 Yue F, Wei W, Lei Z, et al. Journal of Physics:Conference Series, 2023, 2478(4), 042009.
75 Liao C L. Foundry Technology, 2017, 38(11), 2734 (in Chinese).
廖春丽. 铸造技术, 2017, 38(11), 2734.
76 Hu L, Yu D K, Bu Y Z, et al. Transactions of the China Welding Institution, 2024, 45(4), 101 (in Chinese).
胡岭, 余丁坤, 卜永周, 等. 焊接学报, 2024, 45(4), 101.
77 Jagtap P, Kumar P. Journal of Electronic Materials, 2021, 50, 735.
78 Liao Y J. Materials Protection, 1986(6), 34 (in Chinese).
廖义佳. 材料保护, 1986(6), 34.
79 Shen Z L. Materials Protection, 1990, 23(7), 28 (in Chinese).
沈志龙. 材料保护, 1990, 23(7), 28.
80 Xu G Y. Surface Technology, 1993, 22(1), 19 (in Chinese).
许根元. 表面技术, 1993, 22(1), 19.
81 Yao S B, Chen B Y, Liu Z J, et al. Electroplating & Pollution Control, 1992, 12(6), 1 (in Chinese).
姚士冰, 陈秉彝, 刘赞今, 等. 电镀与环保, 1992, 12(6), 1.
82 Meng Z, Zheng K, Huang C, et al. Coatings, 2022, 12(2), 134.
83 Islam M A, Mou J R. Journal of Sol-Gel Science and Technology, 2020, 96, 304.
84 Yi P, Chen D, Li M, et al. Corrosion Science, 2023, 220, 111264.
85 Chuang T H, Lin H J, Chi C C. Journal of Electronic Materials, 2007, 36, 1697.
86 Chuang T H, Lin H J, Chi C C. Scripta Materialia, 2007, 56(1), 45.
87 Jiang B, Xian A P. Philosophical Magazine Letters, 2007, 87(9), 657.
88 Liu M, Xian A P. Journal of Alloys and Compounds, 2009, 486(1-2), 590.
89 Xian A P, Liu M. Journal of Materials Research, 2009, 24(9), 2775.
90 Li C F, Liu Z Q. Acta Materialia, 2013, 61(2), 589.
91 Dudek M, Chawla N. Acta Materialia, 2009, 57(15), 4588.
92 Shi H C, Xian A P. Journal of Electronic Materials, 2011, 40, 1962.
93 Hao H, He H, Lu Y. In:2014 15th International Conference on Electronic Packaging Technology (ICEPT). Chengdu, 2014, pp.1120.
94 Lindborg U. Acta Metallurgica, 1976, 24(2), 181.
95 Lee B Z, Lee D. Acta Materialia, 1998, 46(10), 3701.
96 Eshelby J. Physical Review, 1953, 91(3), 755.
97 Lebret J, Journal of Materials Research, 2003, 18(3), 585.
98 Kakeshita T, Shimizu K, Kawanaka R, et al. Journal of Materials Science, 1982, 17(9), 2560.
99 Fisher R, Darken L, Carroll K. Acta Metallurgica, 1954, 2(3), 368.
100 Sheng G T T, Hu C F, Choi W J, et al. Journal of Applied Physics, 2002, 92(1), 64.
101 Tu K N. Acta Metallurgica, 1973, 21(4), 347.
102 Tu K N. Physical Review B, 1994, 49(3), 2030.
103 Lau J H, Pan S H. Journal of Electronic Packaging, 2003, 125(4), 621.
104 Jiang B, Xian A P. Journal of Materials Science:Materials in Electronics, 2007, 18(5), 513.
105 Chuang T H, Chi C C. Journal of Alloys and Compounds, 2009, 480(2), 974.
106 Zhang L, Xiong D, Su Z, et al. Materials Today Communications, 2022, 33, 104301.
[1] 董洪年, 杨明, 林天一, 陈沛然, 魏婷婷. 针刺密度对碳/碳复合材料力学行为影响的仿真分析[J]. 材料导报, 2025, 39(9): 23120170-6.
[2] 夏益健, 张宇, 张云升, 朱微微, 朱文轩. 磨细凝灰岩制备机制砂混凝土力学性能研究[J]. 材料导报, 2025, 39(9): 24030199-7.
[3] 钱如胜, 叶志波, 张云升, 赵儒泽, 孔德玉, 杨杨, 聂海波. 固碳强化再生粗骨料对其混凝土力学强度及体积稳定性的影响[J]. 材料导报, 2025, 39(9): 24020155-6.
[4] 燕伟, 李驰, 邢渊浩, 高瑜. 循环流化床多元固废粉煤灰基水泥胶砂固碳试验研究[J]. 材料导报, 2025, 39(9): 24010111-7.
[5] 陈港明, 王辉, 黄雪飞. 温轧对低铬FeCrAl合金显微组织及室温和高温力学性能的影响[J]. 材料导报, 2025, 39(9): 24060057-11.
[6] 陈继伟, 朱慧雯, 王海镔, 桑建权, 李艳花, 熊芬, 罗建新. 利用Hofmeister效应一步法制备离子导电耐低温强韧PVA水凝胶[J]. 材料导报, 2025, 39(9): 24050045-7.
[7] 陈永达, 胡智淇, 关岩, 常钧, 陈兵. 羟丙基甲基纤维素与硅烷偶联剂对磷酸镁基钢结构防火涂料性能的影响[J]. 材料导报, 2025, 39(8): 24010194-7.
[8] 雒亿平, 邢美光, 王德法, 易万成, 杨连碧, 薛国斌. 赤铁矿对偏高岭土基地聚物力学性能及反应机理的影响[J]. 材料导报, 2025, 39(8): 24040075-8.
[9] 李琼, 安宝峰, 苏睿, 乔宏霞, 王超群. 废玻璃粉透水混凝土物理性能及复合胶凝体系微观机理研究[J]. 材料导报, 2025, 39(8): 23100186-11.
[10] 程焱, 张弦, 苏志诚, 刘静, 吴开明. 具有TRIP效应的先进高强度钢力学性能及腐蚀行为的研究进展[J]. 材料导报, 2025, 39(8): 24020115-8.
[11] 脱锦鹏, 陈安琦, 姚富升, 徐俊杰, 李响, 董龙龙, 杨义. 颗粒增强耐热钛基复合材料设计制备研究进展[J]. 材料导报, 2025, 39(8): 24040119-10.
[12] 徐焜, 黄子悦, 程云浦, 钱小妹. GNPs改性环氧复合材料等效弹性性能数值预测模型[J]. 材料导报, 2025, 39(8): 24040190-4.
[13] 董硕, 郑立森, 史奉伟, 王来, 刘哲. 钢纤维地聚物再生混凝土力学性能及强度指标换算[J]. 材料导报, 2025, 39(7): 24100219-8.
[14] 梅婷, 徐洪扬, 李逊, 龙运伟, 唐华, 李志鹏, 邹爱华. 柱塞泵关键摩擦副中复杂黄铜与硅锰黄铜的微观组织与耐磨特性研究[J]. 材料导报, 2025, 39(7): 24080117-5.
[15] 谭会杰, 王海燕, 华连庚, 高雪云, 吕萌, 于大威, 邢磊. 稀土Ce对Fe-Ni-Al马氏体时效钢等温过程显微组织演变的影响[J]. 材料导报, 2025, 39(7): 24010236-6.
[1] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[2] WU Wei, CHEN Shiying, ZONG Mengjingzi. Dielectric Properties and Thermal Stability of Nano-Al2O3/Polyether Sulfone-epoxy Resin Composites[J]. Materials Reports, 2017, 31(20): 21 -24 .
[3] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[4] MO Peicheng, WU Yi, YU Wenlin, WANG Jilin, ZOU Zhengguang, ZHONG Shenglin, WANG Peng. In Situ Synthesis of PcBN Composites by cBN-Ti-Al-Si and Their Mechanical Property[J]. Materials Reports, 2018, 32(14): 2355 -2359 .
[5] HU Yaoqiang, CHEN Fajin, LIU Haining, ZHANG Huifang, WU Zhijian, YE Xiushen. Preparation of Poly(N-isopropylacrylamide) Hydrogel and Its Thermally Induced Aggregation Behavior[J]. Materials Reports, 2018, 32(14): 2491 -2496 .
[6] SONG Gang, CHI Jiayu, YU Jingwei, LIU Liming. Corrosion Behavior of Mg-steel Laser-TIG Hybrid Welding Joint[J]. Materials Reports, 2018, 32(16): 2773 -2777 .
[7] HUANG Hui, HAN Jianfeng, WANG Yishun, XIA Yang, ZHANG Jun, GAN Yongping, LIANG Chu, ZHANG Wenkui. Supercritical CO2 Assisting Cladding of LiMnPO4 on the Surface of Li[Li0.2-Mn0.54Co0.13Ni0.13]O2 and Its Electrochemical Properties[J]. Materials Reports, 2018, 32(23): 4072 -4078 .
[8] WANG Zhonghui, XIN Yong. Molecular Dynamics Simulation on the Relationship of Oxygen Diffusion and Polymer Chains Activity[J]. Materials Reports, 2019, 33(8): 1293 -1297 .
[9] CHANG Jingjing. Spin Coating Epitaxial Films[J]. Materials Reports, 2019, 33(12): 1919 -1920 .
[10] ZHUANG Xiaodong, LI Rongxing, YU Xiaohua, XIE Gang, HE Xiaocai, XU Qingxin. Preparation of Lithium Titanate Electrode Materials by Solid Phase Method[J]. Materials Reports, 2019, 33(16): 2654 -2659 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed