Please wait a minute...
材料导报  2025, Vol. 39 Issue (4): 24010076-8    https://doi.org/10.11896/cldb.24010076
  金属与金属基复合材料 |
焊后热处理对Q690高强钢焊缝金属冲击韧性的影响
焦继军1, 曹睿1,*, 李义民2, 王丛元2, 何伟平2, 闫英杰1
1 兰州理工大学材料科学与工程学院,省部共建有色金属先进加工与再利用国家重点实验室,兰州 730050
2 兰州兰石重型装备股份有限公司,兰州 730030
Effect of Post-welding Heat Treatment on Impact Toughness of Q690 High Strength Steel Welded Metal
JIAO Jijun1, CAO Rui1,*, LI Yimin2, WANG Congyuan2, HE Weiping2, YAN Yingjie1
1 The State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
2 Lanzhou LS Heavy Equipment, Lanzhou 730030, China
下载:  全 文 ( PDF ) ( 54797KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用夏比冲击试验、OM、SEM和EBSD等方法研究了焊后热处理对Q690高强钢焊缝金属冲击韧性的影响。结果表明,热处理后,冲击韧性恶化,但随着热处理温度的升高,冲击韧性有所改善。通过起裂源附近的组织发现,不同状态下起裂源附近都存在粗大的块状铁素体,而焊缝中间两相区由于金属处于过热状态,块状铁素体最为粗大,结合冲击功与中间两相区块状铁素体晶粒尺寸的关系,判断中间两相区的块状铁素体为薄弱区域,引起开裂。而关于热处理对冲击韧性的影响,究其原因是热处理过程中,焊缝金属发生回复,细小的板条合并成引起开裂的粗大块状铁素体,使得阻碍能力较强的大角度晶界减少,再加上碳化物在晶界析出,发生晶界脆化,使得冲击断裂模式由焊态的韧性断裂恶化为热处理态的混合断裂。但随着热处理温度的升高,粗大的块状铁素体开始被分割成尺寸较小的相,使得冲击功升高。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
焦继军
曹睿
李义民
王丛元
何伟平
闫英杰
关键词:  Q690高强钢  焊缝金属  冲击韧性  块状铁素体    
Abstract: The effect of post-welding heat treatment on the weld metal impact toughness of Q690 high strength steel was investigated by Charpy impact test, OM, SEM and EBSD. The results show that the impact toughness deteriorates after heat treatment, but the impact toughness improves with the increase of heat treatment temperature. According to the microstructure near the cracking origin, it is found that coarse massive ferrite is appeared near the cracking origin in all specimens, and the massive ferrite in the two-phase zone in the middle of the weld metal is the largest because the weld metal is in an overheated state. Combined with the relationship between the impact work and the grain size of the massive ferrite in the middle two-phase zone, the massive ferrite in the middle two-phase zone becomes a weakest area, which causes final cracking. The reason for the influence of heat treatment on the impact toughness is that during the heat treatment process, the weld metal has a recovery effect, and the fine packets are combined into the coarse massive ferrite that causes cracking, which decreases the fraction of the large angle grain boundaries with strong hindering ability. Coupled with the precipitation of carbide at the grain boundaries, the grain boundary embrittlement occurs, which makes the impact toughness fracture mode deteriorate from ductile fracture of the as-welded state to mixed fracture of the heat-treated state. However, with the increase of heat treatment temperature, the coarse massive ferrite began to be divided into smaller phases, which leads to the increase of the impact energy.
Key words:  Q690 high strength steel    weld metal    impact toughness    massive ferrite
出版日期:  2025-02-25      发布日期:  2025-02-18
ZTFLH:  TG441  
基金资助: 甘肃省重点研发计划项目(23YFGA0057;2022YFB4003000);国家自然科学基金(52175325)
通讯作者:  *曹睿,博士,兰州理工大学教授、博士研究生导师。主要从事新材料、异种材料的焊接性、强韧性、腐蚀、变形、损伤及断裂行为研究。caorui@lut.edu.cn   
作者简介:  焦继军,兰州理工大学硕士研究生,在曹睿老师的指导下进行研究,目前主要从事高强钢焊缝金属强韧化的研究。
引用本文:    
焦继军, 曹睿, 李义民, 王丛元, 何伟平, 闫英杰. 焊后热处理对Q690高强钢焊缝金属冲击韧性的影响[J]. 材料导报, 2025, 39(4): 24010076-8.
JIAO Jijun, CAO Rui, LI Yimin, WANG Congyuan, HE Weiping, YAN Yingjie. Effect of Post-welding Heat Treatment on Impact Toughness of Q690 High Strength Steel Welded Metal. Materials Reports, 2025, 39(4): 24010076-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24010076  或          https://www.mater-rep.com/CN/Y2025/V39/I4/24010076
1 Wang H H, Li G Q, Wan X L, et al. Science and Technology of Welding and Joining, 2017, 22, 133.
2 Cheng P, Liu J, Huang X, et al. Construction and Building Materials, 2022, 328, 127030.
3 Al-Jabri K S, Lennon T, Burgess I W, et al. Journal of Constructional Steel Research, 1998, 46(1-3), 308.
4 Zhang J, Liu X, Kan W, et al. Journal of Earthquake Engineering, 2023, 27(8), 2088.
5 Zhang Y Q. Investigation on the strengthening and toughening mechanism of high strength steel in the heat affected zone during welding for crude oil storage tank. Ph. D. Thesis, Shanghai Jiao Tong University, China, 2009 (in Chinese).
张英乔. 原油储罐用高强钢焊接热影响区强韧化机理研究. 博士学位论文, 上海交通大学, 2009.
6 Wan X L, Wu K M, Huang G, et al. Science & Technology of Welding & Joining, 2016, 21(4), 295.
7 Pamnani R, Jayakumar T, Vasudevan M, et al. Journal of Manufacturing Processes, 2016, 21, 75.
8 Yin F X, Li X C, Chen C X, et al. Journal of Iron and Steel Research International, 2021, 28(7), 853.
9 Lu S P, Wang X, Dong W C, et al. ISIJ International, 2013, 53(1), 96.
10 An T B, Tian Z L, Dan J G, et al. Chinese Journal of Mechanical Engineering, 2015, 51(4), 7 (in Chinese).
安同邦, 田志凌, 单际国, 等. 机械工程学报, 2015, 51(4), 7.
11 Liu G. Study on impact toughness stability of multi-layer and multi-pass welded metal of thick heat-resistant steel plate. Master’s Thesis, Lanzhou University of Technology, China, 2019 (in Chinese).
刘刚. 耐热钢厚板多层多道焊缝金属冲击韧性稳定性研究. 硕士学位论文, 兰州理工大学, 2019.
12 Zhuo X. Study on microstructure and properties of welded metal of 420 MPa high toughness and weather resistant steel. Master’s Thesis, Hebei University of Science & Technology, China, 2019 (in Chinese).
卓晓. 420 MPa级高韧耐候焊条熔敷金属组织和性能研究. 硕士学位论文, 河北科技大学, 2019.
13 Hu T, Wu R M, Li F J, et al. Die & Mould Industry, 2021, 47(12), 7 (in Chinese).
胡涛, 吴日铭, 李方杰, 等. 模具工业, 2021, 47(12), 7.
14 Yi M. Iron Steel Vanadium, 2017, 38(1), 6 (in Chinese).
佚名. 钢铁钒钛, 2017, 38(1), 6.
15 Cui G B, Ju X H, Wang Z Y, et al. Heat Treatment of Metals, 2020, 45(9), 6 (in Chinese).
崔桂彬, 鞠新华, 王泽阳, 等. 金属热处理, 2020, 45(9), 6.
16 Puttick K E. Nature, 1972, 235(5338), 402.
17 Zuo Y, Kang J, An T B, et al. Pressure Vessel Technology, 2021, 38(12), 7 (in Chinese).
左月, 康举, 安同邦, 等. 压力容器, 2021, 38(12), 7.
18 Curry D A, Knott J F. Metal Science, 1979, 13, 341.
19 Wang C, Wang M, Shi J, et al. Scripta Materialia, 2008, 58, 492.
20 Deng B, Yang D, Wang G, et al. Materials, 2021, 14(4), 1000.
21 Bhadeshia H, Christian J. Metallurgical Transactions A, 1990, 21(3), 767.
22 Dong W L, Cao R, Jiang Y, et al. Materials Reports, 2022, 36(15), 5 (in Chinese).
董万龙, 曹睿, 蒋勇, 等. 材料导报, 2022, 36(15), 5.
[1] 李文清, 曹睿, 杨飞, 徐晓龙, 毛兴贵, 蒋勇, 闫英杰. 影响P91耐热钢焊缝金属冲击韧性的因素分析[J]. 材料导报, 2024, 38(3): 22080097-5.
[2] 李文清, 马景平, 曹睿, 徐晓龙, 杨飞, 毛兴贵, 蒋勇, 闫英杰. P91钢焊缝金属碳化物聚集程度的差异对焊缝金属冲击韧性的影响[J]. 材料导报, 2024, 38(20): 23090208-7.
[3] 李力敏, 党莹樱, 黄锦阳, 刘鹏, 李沛, 鲁金涛, 袁勇. 长期时效对镍铁基高温合金组织和冲击韧性的影响[J]. 材料导报, 2024, 38(18): 23050036-6.
[4] 王虎, 武少杰, 董翼纶, 程方杰. 热输入对埋弧增材厚壁构件微观组织与冲击韧性的影响[J]. 材料导报, 2024, 38(11): 22120217-5.
[5] 韩成, 曹睿. 硼在钢中的作用及表征方式[J]. 材料导报, 2022, 36(Z1): 21080164-4.
[6] 宋婕, 常英珂, 吴瑞德, 李琳, 张程煜. 13Cr11Ni2W2MoV马氏体热强不锈钢的韧-脆转变及脆化机理[J]. 材料导报, 2022, 36(4): 20120015-5.
[7] 董万龙, 曹睿, 蒋勇, 杨飞, 黄义芳, 徐晓龙, 陈剑虹. Cr-Mo-V耐热钢焊条电弧焊焊缝金属低温冲击韧性研究[J]. 材料导报, 2022, 36(15): 20120001-5.
[8] 陆由付, 王朝辉, 王学成, 樊振通, 肖绪荡. 桥面现浇混凝土细微裂缝用环氧灌浆材料的环境适应性[J]. 材料导报, 2022, 36(1): 20090252-7.
[9] 陈永庆, 闫英杰, 曹睿, 刘刚, 秦巍, 车洪艳, 王铁军. 原始粉末颗粒边界对FeCrAl合金冲击韧性的影响机理[J]. 材料导报, 2021, 35(6): 6131-6134.
[10] 甘杰, 何林, 李强, 杨晓峰, 范辉. 93W-5Ni-2Fe高密度钨合金冲击韧性关键影响因素研究[J]. 材料导报, 2020, 34(Z1): 304-306.
[11] 王婷玥, 邢书明, 敖晓辉, 王营. 压力对挤压铸造E级钢低温冲击韧性的影响[J]. 材料导报, 2020, 34(6): 6138-6143.
[12] 苏小虎, 栗卓新, 马思鸣, 李红, 张天理, KIM Hee Jin. 氧含量及夹杂物对高强钢金属芯焊丝E120C-K4熔敷金属冲击韧性的影响[J]. 材料导报, 2020, 34(11): 11049-11052.
[13] 张建斌, 刘帆, 薛飞. 热处理工艺对P91耐热钢中δ-铁素体和冲击性能的影响[J]. 《材料导报》期刊社, 2018, 32(8): 1318-1322.
[14] 张忠科, 张剑飞, 于洋, 王希靖. 厚板铝合金搅拌摩擦焊接头的冲击性能[J]. 材料导报, 2018, 32(22): 3936-3940.
[15] 傅定发,冷宇,高文理. 微合金元素Nb对低碳铸钢强度和冲击韧性的影响[J]. 《材料导报》期刊社, 2018, 32(2): 237-242.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed