Characterization of Plasma Nitriding Layer on 30CrNi2MoVA Steel and Its Effect on Macroscopic Mechanical Properties
XIE Guangrui, YANG Panpan, SUN Ji, YANG Yang*, DING Hongyu, LIU Xingguang, ZHANG Shihong*
Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials, Ministry of Education, Anhui University of Technology, Maanshan 243002, Anhui, China
Abstract: Plasma nitriding was applied to create a nitrided layer on the surface of 30CrNi2MoVA steel. The effect of nitriding temperature on the toughness and tensile properties of the samples were investigated. The morphology of the surface cross-section of the nitrided samples was observed by scanning electron microscopy. The elemental distribution and phase composition of the nitrided layers were analyzed using EDS and XRD. The tribological properties, including the coefficient of friction, wear rate, and abrasion morphology of the nitrided layers were characte-rized. The tensile properties of the samples were assessed under room temperature and high temperature by a universal testing machine. The results indicate that after 8 hours of nitriding at 400, 450, and 500 ℃, the surface of 30CrNi2MoVA steel obtained nitrided layers of varying thicknesses with uniform microstructural composition. After nitriding, the maximum surface hardness at 500 ℃ was 816 HV0.1; the tensile strength of the steel at 450 ℃ was 698.7 MPa, and the yield strength was 575.4 MPa. At 450 ℃, the wear rate of the nitrided layer decreased by 87% compared to the base material of 30CrNi2MoVA steel. Plasma nitriding can produce high-hardness, uniformly structured, metallurgically bonded nitrided layers, significantly improving the wear resistance of 30CrNi2MoVA steel. Simultaneously, nitriding treatment slightly enhances the tensile properties of the specimens but has an adverse effect on their ductility and toughness.
解光瑞, 杨盼盼, 孙吉, 杨阳, 丁红宇, 刘兴光, 张世宏. 30CrNi2MoVA钢等离子体渗氮层表征及其对宏观力学性能的影响[J]. 材料导报, 2025, 39(13): 24050145-8.
XIE Guangrui, YANG Panpan, SUN Ji, YANG Yang, DING Hongyu, LIU Xingguang, ZHANG Shihong. Characterization of Plasma Nitriding Layer on 30CrNi2MoVA Steel and Its Effect on Macroscopic Mechanical Properties. Materials Reports, 2025, 39(13): 24050145-8.
1 Wang F, Chen Y C, Di C C, et al. Hot Working Technology, 2015, 44(20), 142 (in Chinese). 王斐, 陈永才, 狄长春, 等. 热加工工艺, 2015, 44(20), 142. 2 Guo C A, Zhou F, Hu M, et al. Materials Reports, 2018, 32(18), 3213 (in Chinese). 郭策安, 周峰, 胡明, 等. 材料导报, 2018, 32(18), 3213. 3 Shukla P, Awasthi S, Ramkumar J, et al. Journal of Alloys and Compounds, 2018, 768, 1039. 4 Wang R. New Technology & New Process, 2008, (7), 68 (in Chinese). 王嵘. 新技术新工艺, 2008, (7), 68. 5 Luo D F. Metal Heat Treatment, 2022, 47(7), 227 (in Chinese). 罗德福. 金属热处理, 2022, 47(7), 227. 6 Liu H J, Han X, Chen J. Hot Working Technology, 2024, 53(2), 24. 刘海建, 韩笑, 陈杰. 热加工工艺, 2024, 53(2), 24. 7 Luo G D, Zheng Z, Ning L K, et al. Engineering Failure Analysis, 2020, 111, 104455. 8 Singh S K, Naveen C, Venkat S Y, et al. Materials Today, Proceedings, 2019, 18, 2717. 9 Shin W S, Sim A, Baek S, et al. Surface and Coatings Technology, 2021, 410, 126956. 10 Sun J, Li J, Xie J M, et al. Journal of Materials Research and Technology, 2022, 19, 4804. 11 Liu Z Y, Wang X W, Sun J Q, et al. Transactions of Materials and Heat Treatment, 2019, 40(3), 148 (in Chinese). 刘仲玉, 王兴伟, 孙金全, 等. 材料热处理学报, 2019, 40(3), 148. 12 Zhu Y G, Lu G L, Zang Z H. Foundry, 2023, 72(7), 805 (in Chinese). 朱永刚, 吕刚磊, 张智辉. 铸造, 2023, 72(7), 805. 13 DEZ-300 SBR rifle from DEZ tactical weapons company in the United States. Small Arms, 2015(15), 28 (in Chinese). 美国DEZ战术武器公司DEZ-300 SBR步枪. 轻兵器, 2015, (15), 28. 14 Wang R, Ye S G, Wang K. Fundamentals of National Defense Technology, 2010(6), 49 (in Chinese). 王嵘, 叶书贵, 王康. 国防技术基础, 2010(6), 49. 15 Zhao F S, Li Y K, Bi Y J, et al. Rechuli Jishu Yu Zhuangbei, 2021, 42(4), 54 (in Chinese). 赵福帅, 李永康, 毕永洁, 等. 热处理技术与装备, 2021, 42(4), 54. 16 Chen H Y. Process, structure and performance of surface nanocrystallization and ion nitriding on TC4 titanium alloy. Master’s Thesis, South China University of Technology, China, 2020 (in Chinese). 陈涵悦. TC4钛合金表面纳米化与离子渗氮的工艺、结构与性能. 硕士学位论文, 华南理工大学, 2020. 17 Zhu Q Y, Li S X, Zhao S F, et al. Hot Working Technology, 2019, 48(10), 35 (in Chinese). 朱全意, 李双喜, 赵少甫, 等. 热加工工艺, 2019, 48(10), 35. 18 Liu D, Shen Y L, Wang E L, et al. Coatings, 2023, 13(9), 1626. 19 Wei A, Hu J T, Li Y Y, et al. Engineering Failure Analysis, 2024, 157, 107948. 20 Xue Y Q, Shi Y, Li Y D, et al. Hot Working Technology, 2011, 40(16), 185 (in Chinese). 薛育强, 史颖, 李耀东, 等. 热加工工艺, 2011, 40(16), 185. 21 Liu Y R, Fischer T E, Dent A. Surface and Coatings Technology, 2003, 167(1), 68. 22 Li J, Tao X, Wu W P, et al. Journal of Materials Science, 2023, 58(5), 2294. 23 Liu J Q, Wang X F, Liu K Z. Materials Reports, 2023, 37(14), 164 (in Chinese). 刘嘉琴, 王晓方, 刘柯钊. 材料导报, 2023, 37(14), 164. 24 Li J, Sun L, Xie J M, et al. ACS Applied Materials & Interfaces, 2023, 15(42), 49814. 25 Fu K Y, Wang S J, Pan M M, et al. Heat Treatment of Metals, 2018, 43(9), 118 (in Chinese). 付柯焴, 王守晶, 潘明明, 等. 金属热处理, 2018, 43(9), 118. 26 Hosseini S R, Ahmadi A. Vacuum, 2013, 87, 30. 27 Yang Y, Yan M F, Zhang Y X, et al. Surface and Coatings Technology, 2016, 304, 142. 28 Yang W J, Zhang M, Zhao Y H, et al. Surface and Coatings Technology, 2016, 298, 64. 29 Zhao Y H, Yang W J, Guo C Q, et al. Acta Metallurgica Sinica (English Letters), 2015, 28(8), 984. 30 Li Y, He Y Y, Xiu J J, et al. Surface and Coatings Technology, 2017, 329, 184. 31 Sun L, Cao C, Du J T, et al. Surface Technology, 2023, 52(1), 421 (in Chinese). 孙璐, 曹驰, 杜金涛, 等. 表面技术, 2023, 52(1), 421. 32 Nohava J, Dessarzin P, Karvankova P, et al. Tribology International, 2015, 81, 231. 33 Li Y, He Y Y, Zhang S Z, et al. Vacuum, 2017, 146, 1. 34 Farokhzadeh K, Edrisy A. Materials Science and Engineering:A, 2015, 620, 435. 35 Li Y H. Investigation on the effect of QPQ technology on mechanic pro-perty and corrosion resistance of the materials. Ph. D. Thesis, Jiangsu University, China, 2007 (in Chinese). 李远辉. QPQ技术对材料力学性能和抗蚀性影响的研究. 博士学位论文, 江苏大学, 2007. 36 Zong X M, Gao F, Quan S J, et al. Bearing, 2020(11), 40 (in Chinese). 宗晓明, 高飞, 权思佳, 等. 轴承, 2020(11), 40. 37 Farghali A, Aizawa T. Materials Transactions, 2017, 58(4), 697. 38 Liu H Q. Investigation on tensile and high-cycle fatigue properties of piston aluminum alloy. Master’s Thesis, University of Science and Techno-logy of China, China, 2020 (in Chinese). 刘海全. 活塞铝合金拉伸与高周疲劳性能研究. 硕士学位论文, 中国科学技术大学, 2020. 39 Xu Y, Zeng X C, Tian Y Q, et al. Journal of Plasticity Engineering, 2021, 28(7), 124 (in Chinese). 徐勇, 曾祥成, 田亚强, 等. 塑性工程学报, 2021, 28(7), 124. 40 Zhang J, Miao C H, Qin X L, et al. Transactions of Materials and Heat Treatment, 2022, 43(7), 129 (in Chinese). 张健, 缪春辉, 秦小龙, 等. 材料热处理学报, 2022, 43(7), 129. 41 Xiao X P, Liu R Q, Chen H M, et al. Material Reports, 2015, 29(10), 148 (in Chinese). 肖翔鹏, 柳瑞清, 陈辉明, 等. 材料导报, 2015, 29(10), 148. 42 Shan Y Q, Zhang Y M, Zhang C M, et al. Transactions of Materials and Heat Treatment, 2024, 45(1), 95 (in Chinese). 单运启, 张彦敏, 张朝民, 等. 材料热处理学报, 2024, 45(1), 95.