Please wait a minute...
材料导报  2025, Vol. 39 Issue (13): 24050099-7    https://doi.org/10.11896/cldb.24050099
  高分子与聚合物基复合材料 |
聚芳酯纤维松弛温度及松弛行为研究
丁许1,2, 孙颖1,2,*, 陈利1,2
1 天津工业大学纺织科学与工程学院,天津 300387
2 天津工业大学先进纺织复合材料教育部重点实验室,天津 300387
Study on Relaxation Temperature and Relaxation Behavior of Polyarylate Fibers
DING Xu1,2, SUN Ying1,2,*, CHEN Li1,2
1 School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
2 MOE Key Laboratory of Advanced Textile Composites Materials, Tiangong University, Tianjin 300387, China
下载:  全 文 ( PDF ) ( 13297KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 聚芳酯纤维具有高强高模、耐高温、耐磨、抗蠕变和抗松弛性能等优异特性,是实现热刀压紧释放装置、网状天线、空间系绳和充气式太空舱等航天器可展开结构轻量化、高尺寸稳定性的理想纤维材料。然而,聚芳酯纤维在长期载荷作用下的应力松弛严重降低了航天器可展开结构的工作性能和可靠性。为进一步研究聚芳酯纤维的应力松弛,本工作结合差示扫描量热法、动态热机械分析和原位红外光谱技术,探究了聚芳酯的松弛温度和松弛机理,并设计和搭建了应力松弛测试系统,分析了载荷水平对聚芳酯纤维松弛行为的影响。结果表明:聚芳酯纤维在90 ℃发生β松弛,主要与苯环和酯基的运动有关。高温促进了分子结晶和缠结点聚集,使纤维的模量上升并在120~250 ℃宽温度范围内保持相对稳定。在不同载荷水平下,纤维的松弛率存在显著差异,75%断裂强力下的松弛率分别为25%和50%断裂强力下的4.46倍和3.01倍。应力松弛模型的拟合结果表明,聚芳酯纤维的松弛过程由两种松弛模式组成,而且在25%和50%断裂强力下可能具有相同的分子运动。为了确保航天器结构的工作性能和可靠性,聚芳酯纤维的服役载荷应当控制在50%断裂强力以下。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
丁许
孙颖
陈利
关键词:  聚芳酯纤维  应力松弛  编织绳索  航天器    
Abstract: Polyarylate fibers have excellent properties such as high strength and high modulus, high temperature resistance, wear resistance, creep resistance and relaxation resistance. It is an ideal choice for realizing lightweight and high-dimensional stability of deployable structures of spacecraft such as hot knife hold-down release devices, mesh antennas, space tethers, and inflatable space habitats. However, the stress rela-xation of polyarylate fibers under long-term loading seriously reduces the performance and reliability of spacecraft deployable structures. In order to further study the stress relaxation of polyarylate fibers, the relaxation temperature and relaxation mechanism of polyarylate were investigated by combining differential scanning calorimetry, dynamic mechanical analysis, and in-situ infrared spectroscopy. And the stress relaxation test system was designed and constructed to analyze the effect of load level on the relaxation behavior of polyarylate fibers. The results show that β-relaxation of polyarylate fibers occurs at 90 ℃, which is mainly related to the movement of benzene rings and ester groups. Further increase in temperature promotes molecular crystallization and aggregation of entanglement points, which increases the modulus of the fiber and keeps it relatively stable in a wide temperature range from 120 ℃ to 250 ℃. There are significant differences in the relaxation rates of fibers under different load levels. The relaxation rates under 75% breaking load are 4.46 and 3.01 times higher than those at 25% and 50% breaking load, respectively. The fitting results of the stress relaxation model indicated that the relaxation process of the polyarylate fibers consisted of two relaxation modes, and that the same molecular motions might be present at 25% and 50% breaking load. In order to ensure the working performance and reliability of the spacecraft structure, the service load of polyarylate fiber should be controlled below 50% of the breaking load.
Key words:  polyarylate fiber    braided rope    stress relaxation    spacecraft
出版日期:  2025-07-10      发布日期:  2025-07-21
ZTFLH:  TS102.1  
基金资助: 天津市海河实验室项目(22HHXCJC00007);航空发动机及燃气轮机基础科学中心项目(P2022-B-Ⅳ-014-001)
通讯作者:  *孙颖,博士,天津工业大学纺织科学与工程学院教授、博士研究生导师。目前主要从事编织材料及其复合材料方面的科研与教学工作。sunying@tiangong.edu.cn   
作者简介:  丁许,天津工业大学纺织科学与工程学院博士研究生,在孙颖教授的指导下进行研究。目前主要研究领域为高性能纤维编织材料。
引用本文:    
丁许, 孙颖, 陈利. 聚芳酯纤维松弛温度及松弛行为研究[J]. 材料导报, 2025, 39(13): 24050099-7.
DING Xu, SUN Ying, CHEN Li. Study on Relaxation Temperature and Relaxation Behavior of Polyarylate Fibers. Materials Reports, 2025, 39(13): 24050099-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24050099  或          https://www.mater-rep.com/CN/Y2025/V39/I13/24050099
1 Limeneh D Y, Yilma K T. Journal of Engineering, 2021, 2021, 6646148.
2 Kenner W S, Jones T C, Le Boffe V M. Controlled environmental effects on creep test data of woven fabric webbings for inflatable space modules:TM-2020-220561, Report, NASA, 2020.
3 Liu R, Guo H, Liu R, et al. Acta Astronautica, 2017, 140, 66.
4 Meng Z J, Huang P F, Lu Y B, et al. Journal of Astronautics, 2019, 40(10), 1134(in Chinese).
孟中杰, 黄攀峰, 鲁迎波, 等. 宇航学报, 2019, 40(10), 1134.
5 Augustijn J, Grimminck M, Bongers E, et al. In:16th European Space Mechanisms & Tribology Symposium ESMATS. Spain, 2015, pp. 1.
6 Ding X, Sun Y, Luo M, et al. Journal of Textile Research, 2021, 42(12), 180(in Chinese).
丁许, 孙颖, 罗敏, 等. 纺织学报, 2021, 42(12), 180.
7 Yang M J, Deng B B, Ma Z. Materials Reports, 2017, 31(12), 136(in Chinese).
杨明君, 邓彬彬, 马占. 材料导报, 2018, 31(12), 136.
8 Fette R B, Sovinski M F. Vectran fiber time dependant behavior and additional static loading properties:TM-2004-212773, Report, NASA, 2004.
9 LI W. Research on creep and stress relaxation of vectran fiber and rope. Master’s Thesis, Harbin Institute of Technology, China, 2010 (in Chinese).
李伟. Vectran纤维与绳索的蠕变与应力松弛行为研究. 硕士学位论文, 哈尔滨工业大学, 2010.
10 Yang H J. Thermomechanical deformation of poly-imide braided rope and its influencing factors. Master’s Thesis, Harbin Institute of Technology, China, 2017 (in Chinese).
杨惠杰. 聚酰亚胺编织绳的热机械变形规律及影响因素. 硕士学位论文, 哈尔滨工业大学, 2017.
11 Martins P, Nunes J S, Hungerford G, et al. Physics Letters A, 2009, 373(2), 177.
12 Menard K P, Menard N R. Encyclopedia of Polymer Science and Technology, 2002, 1-33.
13 Langston S L, Jones T C. Investigation of high variability in the creep behavior of vectran yarn. Report:TM-20210014024, NASA, 2021.
14 Hoshiro H, Endo R, Sloan F E. In:High-Performance and Specialty Fibers, The Society of Fiber Science and Technology, ed. , Springer, Japan, 2016, pp. 175.
15 Ward Y, Young R J. Polymer, 2001, 42(18), 7857.
16 Bertoldo Menezes D, Reyer A, Marletta A, et al. Polymer, 2016, 106, 85.
17 Ding X, Sun Y, Wei Y F, et al. Technical Textiles, 2020, 38(4), 17(in Chinese).
丁许, 孙颖, 魏雅斐, 等. 产业用纺织品, 2020, 38(4), 17.
18 Zhou X, Yu D, Barrera O. Advances in Applied Mechanics, 2023, 56, 189.
19 Zhang F F, Zhou R, Sun Y G, et al. Materials Reports, 2023, 56, 189(in Chinese).
张芳芳, 周蕊, 孙毅刚, 等. 材料导报, 2022, 36(15), 196.
20 Collins G, Long B. Journal of Applied Polymer Science, 1994, 53(5), 587.
21 Saw C, Collins G, Menczel J, et al. Journal of Thermal Analysis and Calorimetry, 2008, 93(1), 175.
22 Liu Y, Liu Y, Tan H, et al. Polymer Degradation and Stability, 2013, 98(9), 1744.
23 Yang F, Liu J H, Bian A T, et al. Journal of Textile Research, 2019, 40(11), 9(in Chinese).
杨帆, 刘俊华, 边昂挺, 等. 纺织学报, 2019, 40(11), 9.
24 Menczel J, Collins G, Saw S. Journal of Thermal Analysis and Calorimetry, 1997, 49(1), 201.
25 Ornaghi H L, Almeida J H S, Monticeli F M, et al. Composites Part C:Open Access, 2020, 3, 100051.
[1] 周涛, 张笑晴, 陈家荣, 杨晨艺, 雷彩红. 厚朴酚基形状记忆环氧树脂的制备及性能研究[J]. 材料导报, 2025, 39(11): 24020002-7.
[2] 吴护林, 李忠盛, 金应荣, 贺毅. 弹簧应力松弛反常载荷损失及原因分析[J]. 材料导报, 2023, 37(23): 22090089-6.
[3] 刘泊天, 于翔天, 张静静, 姚子洋, 高鸿, 邢焰. 航天器舱外应用材料服役寿命末期耐辐射损伤机制研究[J]. 材料导报, 2022, 36(Z1): 20070234-4.
[4] 高鸿, 邢焰, 孙明, 余斌, 李岩, 刘泊天, 吴冰, 于利夫, 樊彦艳. 航天器用材料应用验证技术体系[J]. 材料导报, 2022, 36(22): 22050332-5.
[5] 向艳超, 高鸿, 文明, 赵啟伟. 航天器热控材料及应用研究进展[J]. 材料导报, 2022, 36(22): 22050193-6.
[1] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[2] LIU Shuaiyang, WANG Aiqin, LYU Shijing, TIAN Hanwei. Interfacial Properties and Further Processing of Cu/Al Laminated Composite: a Review[J]. Materials Reports, 2018, 32(5): 828 -835 .
[3] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[4] CAO Xiuzhong, ZHAO Bing, HAN Xiuquan, HOU Hongliang, QU Haitao. Research on Deformation Mechanism of SiC Fiber Reinforced Titanium Matrix Composites Subjected to High Temperature Axial Tension[J]. Materials Reports, 2017, 31(8): 88 -93 .
[5] ZHANG Jiaqing, ZHANG Bosi, WANG Liufang, FAN Minghao, XIE Hui, LI Wei. The State of the Art of Combustion Behavior of Live Wires and Cables[J]. Materials Reports, 2017, 31(15): 1 -9 .
[6] LI Xueyun, WANG Hezhong. Optimization and Characterization of TEMPO-Mediated Oxidization of Nanochitin Whiskers[J]. Materials Reports, 2018, 32(10): 1597 -1601 .
[7] LI Beigang, WANG Min. High Efficient Adsorption of Dyes by Fe/CTS/AFA Composite[J]. Materials Reports, 2018, 32(10): 1606 -1611 .
[8] ZHAO Qingchen, WANG Jinlong, ZHANG Yuanliang, SHEN Yihong, LIU Shujie. Fatigue Behavior and Fatigue Life for FV520B-I at Different Loading Frequencies[J]. Materials Reports, 2018, 32(16): 2837 -2841 .
[9] ZHOU Chao, WANG Hui, OUYANG Liuzhang, ZHU Min. The State of the Art of Hydrogen Storage Materials for High-pressure Hybrid Hydrogen Vessel[J]. Materials Reports, 2019, 33(1): 117 -126 .
[10] WANG Huifen, LIU Gang, CAO Kangli, YANG Biqi, XU Jun, LAN Shaofei, ZHANG Lixin. Development Status of Carbon Nanotube Materials and Their Application Prospects in Spacecraft[J]. Materials Reports, 2019, 33(z1): 78 -83 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed