Please wait a minute...
材料导报  2026, Vol. 40 Issue (2): 24110166-8    https://doi.org/10.11896/cldb.24110166
  无机非金属及其复合材料 |
无负极锂金属电池电解液的研究进展
余豪1,2, 邓文君2, 王永飞1,*, 罗大为2,*
1 辽宁科技大学材料与冶金学院,辽宁 鞍山 114051
2 深圳职业技术大学材料与环境工程学院,广东 深圳 518055
Research Progress of Electrolyte for Anode-free Lithium Metal Batteries
YU Hao1,2, DENG Wenjun2, WANG Yongfei1,*, LUO Dawei2,*
1 School of Materials and Metallurgy, University of Science and Technology Liaoning, Anshan 114051, Liaoning, China
2 School of Materials and Environmental Engineering, Shenzhen Polytechnic University, Shenzhen 518055, Guangdong, China
下载:  全 文 ( PDF ) ( 17160KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 无负极锂金属电池(AFLMBs)因其高能量密度、经济性以及安全性而被视为下一代高能量电池体系的有力候选。这类电池省略了负极活性材料,从而在降低单位成本的同时提升了能量密度。然而,负极处沉积的金属锂极其活泼,易于引发锂枝晶的形成、“死锂”的产生以及与电解液的不良反应,这些因素妨碍了稳定负极界面的形成,并加速了活性锂的损耗,最终导致电池失效。因此,开发有效策略以增强AFLMBs的循环稳定性和锂金属的沉积/剥离可逆性成为了发展的核心目标。针对AFLMBs的改进已经开展了许多工作,包括电解液改性、集流体改性、人工的固体电解质界面(SEI)、正极中过量锂等。电解液作为AFLMBs的核心组分,需通过系统性优化策略,如高浓双盐体系、氟化溶剂设计及固态电解质界面构筑来提升其循环寿命与库仑效率。这些改进通过调控溶剂化结构、优化SEI膜化学组分及抑制锂枝晶生长,为高能量密度AFLMBs的实际应用奠定基础。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
余豪
邓文君
王永飞
罗大为
关键词:  无负极锂金属电池  电解液  锂枝晶  高能量密度    
Abstract: Anode-free lithium metal batteries (AFLMBs) are considered strong contenders for the next generation of high-energy battery systems due to their exceptional energy density, cost-effectiveness, and safety. By eliminating the need for cathode active materials, these batteries achieve higher energy density while reducing per-unit costs. However, the metallic lithium deposited at the cathode is highly reactive, prone to the formation of lithium dendrites, the generation of "dead lithium", and adverse reactions with the electrolyte. These issues hinder the formation of a stable cathode interface and accelerate the consumption of active lithium, ultimately leading to battery performance decline. Therefore, developing effective strategies to enhance the cycling stability and the reversibility of lithium metal deposition/stripping in AFLMBs has become a central goal in their development. Numerous efforts have been made to improve these batteries, including modifications to the electrolyte, current collector, artificial solid electrolyte interphase (SEI), and excess lithium in the cathode. As the core component of AFLMBs, the electrolyte requires systematic optimization strategies, such as high-concentration dual-salt systems, fluorinated solvent design, and solid-state electrolyte interface engineering, to enhance its cycle life and Coulombic efficiency. These advancements, achieved by modulating solvation structures, optimizing the chemical composition of the SEI, and suppressing lithium dendrite growth, establish a foundational framework for the practical application of high-energy-density AFLMBs.
Key words:  anode-free lithium metal battery    electrolyte    lithium dendrite    high energy density
出版日期:  2026-01-25      发布日期:  2026-01-27
ZTFLH:  TM912  
基金资助: 深圳市稳定支持项目(20220811141844002);广东省普通高校重点领域专项(2024ZDZX3077);广东省先进电池材料研究创新团队项目(2022KCXTD055)
通讯作者:  *王永飞,博士,辽宁科技大学副教授,研究兴趣包括能量转换材料在电化学催化和太阳能电池中的基础应用。wyf8307@ustl.edu.cn;
罗大为,博士,深圳职业技术大学副教授,长期致力于锂离子电池关键材料和无负极锂金属电池的研究。luodw@szpu.edu.cn   
作者简介:  余豪,辽宁科技大学材料与冶金学院硕士研究生,深圳职业技术大学材料与环境学院联合培养硕士研究生,在王永飞副教授和罗大为副教授的指导下研究无负极锂金属电池。
引用本文:    
余豪, 邓文君, 王永飞, 罗大为. 无负极锂金属电池电解液的研究进展[J]. 材料导报, 2026, 40(2): 24110166-8.
YU Hao, DENG Wenjun, WANG Yongfei, LUO Dawei. Research Progress of Electrolyte for Anode-free Lithium Metal Batteries. Materials Reports, 2026, 40(2): 24110166-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24110166  或          https://www.mater-rep.com/CN/Y2026/V40/I2/24110166
1 Bruce P G, Freunberger S A, Hardwick L J, et al. Nature Materials, 2012, 11(1), 19.
2 Liu J, Bao Z N, Cui Y, et al. Nature Energy, 2019, 4(3), 180.
3 Qian J F, Adams B D, Zheng J M, et al. Advanced Functional Materials, 2016, 26(39), 7094.
4 Weber R, Genovese M, Louli A J, et al. Nature Energy, 2019, 4(8), 683.
5 Louli A J, Eldesoky A, Weber R, et al. Nature Energy, 2020, 5(9), 693.
6 Yu Z, Wang H S, Kong X, et al. Nature Energy, 2020, 5(7), 526.
7 Lee Y G, Fujiki S, Jung C, et al. Nature Energy, 2020, 5(4), 299.
8 Hagos T T, Thirumalraj B, Huang C J, et al. ACS Applied Materials & Interfaces, 2019, 11(10), 9955.
9 Assegie A A, Chung C C, Tsai M C, et al. Nanoscale, 2019, 11(6), 2710.
10 Rodriguez R, Edison R A, Stephens R M, et al. Journal of Materials Chemistry A, 2020, 8(7), 3999.
11 Alvarado J, Schroeder M A, Pollard T P, et al. Energy & Environmental Science, 2019, 12(2), 780.
12 Mukra T, Marrache R, Shekhter P, Peled E. Journal of the Electroche-mical Society, 2021, 168(9), 090541.
13 Su L S, Charalambous H, Cui Z H, Manthiram A. Energy & Environmental Science, 2022, 15(2), 843.
14 Pande V, Viswanathan V. ACS Energy Letters, 2019, 4(12), 2952.
15 Tong Z Z, Bazri B, Hu S F, et al. Journal of Materials Chemistry A, 2021, 9(12), 7396.
16 Zhang J G. Nature Energy, 2019, 4(8), 637.
17 He W X, Geng L, Yao F, Journal of Power Supply, 2024, 22(2), 183 (in Chinese).
何文轩, 耿磊, 姚芳. 电源学报, 2024, 22(2), 183.
18 Tian Y, An Y L, Wei C L, et al. Nano Energy, 2020, 78, 105344.
19 Kim S, Jung C, Kim H, et al. Advanced Energy Materials, 2020, 10(12), 1903993.
20 Hosaka T, Kubota K, Kojima H, et al. Chemical Communications, 2018, 54(60), 8387.
21 Nilsson V, Kotronia A, Lacey M, et al. ACS Applied Energy Materials, 2020, 3(1), 200.
22 Wang Z C, Zhang F R, Sun Y Y, et al. Advanced Energy Materials, 2021, 11(17), 2003752.
23 Niu C J, Lee H, Chen S R, et al. Nature Energy, 2019, 4(7), 551.
24 Beyene T T, Bezabh H K, Weret M A, et al. Journal of the Electrochemical Society, 2019, 166(8), A1501.
25 Choi H, Bae Y, Lee S M, et al. Journal of Electrochemical Science and Technology, 2022, 13(1), 78.
26 Matsumoto K, Inoue K, Nakahara K, et al. Journal of Power Sources, 2013, 231, 234.
27 Kang D W, Moon J, Choi H Y, et al. Journal of Power Sources, 2021, 490, 229504.
28 Wu B L, Chen C G, Danilov D L, et al. Energy & Environmental Materials, 2024, 7(3), e12642.
29 Hagos T M, Bezabh H K, Redda H G, et al. Journal of Power Sources, 2021, 512, 230388.
30 Fan X L, Ji X, Chen L, et al. Nature Energy, 2019, 4(10), 882.
31 Xue W J, Shi Z, Huang M J, et al. Energy & Environmental Science, 2020, 13(1), 212.
32 Holoubek J, Yu M Y, Yu S C, et al. ACS Energy Letters, 2020, 5(5), 1438.
33 Zheng Q F, Yamada Y, Shang R, et al. Nature Energy, 2020, 5(4), 291.
34 Li Y, Wu F, Li Y, et al. Chemical Society Reviews, 2022, 51(11), 4484.
35 Guo Z Z, Zhang R, Sun D, et al. Acta Chimica Sinica, 2024, 82(9), 919 (in Chinese).
郭姿珠, 张睿, 孙旦, 等. 化学学报, 2024, 82(9), 919.
36 Beyene T T, Jote B A, Wondimkun Z T, et al. ACS Applied Materials & Interfaces, 2019, 11(35), 31962.
37 Rodriguez R, Loeffler K E, Edison R A, et al. ACS Applied Energy Materials, 2018, 1(11), 5830.
38 Tan L J, Chen S Q, Chen Y W, et al. Angewandte Chemie, International Edition, 2022, 61(32), e202203693.
39 Zhang J W, Zhang H K, Deng L Q, et al. Energy Storage Materials, 2023, 54, 450.
40 Chen J, He B, Cheng Z X, et al. Journal of the Electrochemical Society, 2021, 168(12), 120535.
41 Feng Y, Wang G, Chen J Y, et al. Materials Reports, 2022, 36(11), 23 (in Chinese).
冯阳, 汪港, 陈君妍, 等. 材料导报, 2022, 36(11), 23.
42 Shi J, Ding L N, Wan Y H, et al. Journal of Energy Chemistry, 2021, 57, 650.
43 Wang H S, Yu Z, Kong X, et al. Advanced Materials, 2021, 33(25), 2008619.
44 Amanchukwu C V, Yu Z, Kong X, et al. Journal of the American Chemical Society, 2020, 142(16), 7393.
45 Yu Z, Rudnicki P E, Zhang Z W, et al. Nature Energy, 2022, 7(1), 94.
46 Gu Q, Liu X X, Zhou X Y, et al. Acta Chimica Sinica, 2024, 82(4), 449 (in Chinese).
谷琪, 刘夏夏, 周鑫宇, 等. 化学学报, 2024, 82(4), 449.
47 Chen X, Zhao N, Liu G X, et al. Chinese Journal of Power Sources, 2024, 48(6), 969 (in Chinese).
陈昕, 赵宁, 刘桂贤, 等. 电源技术, 2024, 48(6), 969.
48 Pei F, Huang Y M, Wu L, et al. Advanced Materials, 2024, 36(49), 2409269.
[1] 付举, 马星阳, 谢雯娜, 吕鹏飞, 智茂永. 锂离子电池硅基负极膨胀机理及改性研究进展[J]. 材料导报, 2025, 39(18): 24070028-8.
[2] 孙文浩, 田君, 高洪波, 刘娜, 张锟, 梁晓嫱, 王聪杰, 王浩辰. 钠离子电池关键材料的热行为研究新进展[J]. 材料导报, 2025, 39(11): 24070213-11.
[3] 胡时光, 郭鹏凯, 钱韫娴, 张光照, 王军, 邓永红, 王朝阳. 氟代线性碳酸酯对高电压LiNi0.5Co0.2Mn0.3O2/人造石墨软包电池性能的影响[J]. 材料导报, 2023, 37(8): 22050331-7.
[4] 罗重阳, 李宇杰, 王丹琴, 刘双科, 陈宇方, 郑春满. 改性电解液促进均匀锂沉积的研究进展[J]. 材料导报, 2023, 37(6): 21070209-11.
[5] 童乐, 王敬丰, 王金星, 瞿佰华, 黄光胜, 潘复生. 可充镁电池负极与电解液相容性的研究进展[J]. 材料导报, 2023, 37(24): 22040273-7.
[6] 王占营, 马颖, 安守静, 孙乐. 电解液配方对纯镁微弧氧化膜层耐蚀性的影响[J]. 材料导报, 2023, 37(15): 21100085-10.
[7] 姚诗言, 曾立艳, 刘军. 高性能锂金属电池负极结构设计及界面强化研究进展[J]. 材料导报, 2022, 36(16): 21010216-11.
[8] 冯阳, 汪港, 陈君妍, 康卫民, 邓南平, 程博闻. 高性能锂硫电池研究进展与改进策略[J]. 材料导报, 2022, 36(11): 20080027-14.
[9] 杨帅, 刘施峰, 张静, 柳亚辉, 邓超, 祝佳林. 电解液的循环使用对阳极氧化Ta2O5纳米管形貌的影响[J]. 材料导报, 2021, 35(Z1): 112-115.
[10] 赵立敏, 王惠亚, 解启飞, 邓秉浩, 张芳, 何丹农. 车用动力锂离子电池纳米硅/碳负极材料的制备技术与发展[J]. 材料导报, 2020, 34(7): 7026-7035.
[11] 浦文婧, 芦伟, 谢凯, 郑春满. 宽温型锂离子电池有机电解液的研究进展[J]. 材料导报, 2020, 34(7): 7036-7044.
[12] 李灵桐, 臧晓蓓, 曹宁. 锌锰二次电池研究进展[J]. 材料导报, 2019, 33(19): 3210-3218.
[13] 黄文欣, 李军, 徐云鹤. 二氧化锰基超级电容器的研究进展[J]. 材料导报, 2018, 32(15): 2555-2564.
[14] 张亚婷, 任绍昭, 党永强, 刘国阳, 李可可, 周安宁, 邱介山. 煤基三维石墨烯基电极在不同电解液中的电化学性能*[J]. 《材料导报》期刊社, 2017, 31(16): 1-5.
[15] 卢云, 王伟, 宫岩坤, 沈逸欣, 冯孟杰. 二甲基亚砜对有机电解液锂空气电池性能的影响*[J]. 《材料导报》期刊社, 2017, 31(12): 1-5.
[1] REN Weixin, CAO Shengfei, DAI Wenjie, XIE Jingli, ZHANG Qi. Progress in Research on Shear Characteristics of Buffer Materials for High-level Radioactive Waste Repositories[J]. Materials Reports, 2025, 39(23): 25010172 -11 .
[2] JIANG Yue, XIAO Mingjun. Research Progress of High-entropy Oxides in Electrode Materials for Sodium-ion Batteries[J]. Materials Reports, 2025, 39(24): 25010122 -9 .
[3] MA Shuo, JIANG Yi, GAO Xiaojian. The Influence Law and Mechanism of C-S-H Seed on the Strength of Steam Curing Cement-based Materials[J]. Materials Reports, 2025, 39(24): 24120059 -7 .
[4] HU Jianlin, ZHAO Yuxuan, ZHOU Yongxiang, LENG Faguang, DU Xiuli. Dynamic Properties of Geopolymer-Cemented Soils and Fitting Analysis of Their Dynamic Constitutive Model[J]. Materials Reports, 2025, 39(24): 25010113 -9 .
[5] . [J]. Materials Reports, 2026, 40(1): 0 .
[6] ZHANG Minxia. Experimental Study on Influencing Factors and Mechanism of Microbial Soil Improvement Effect[J]. Materials Reports, 2026, 40(1): 24120104 -8 .
[7] . [J]. Materials Reports, 2026, 40(2): 0 .
[8] QU Shaopeng, ZHANG Haiqiang, YANG Lujia, LI Xin, HE Dongyu. Research Status and Development Trends of Transport Materials for Offshore Wind to Hydrogen[J]. Materials Reports, 2026, 40(2): 25020154 -11 .
[9] ZHANG Ping, LU Mingtai, LU Tiantian, YUE Yinghu. Analysis of DC Aging Characteristics of Stable ZnO Varistors Based on Voronoi Network and Finite Element Simulation Model[J]. Materials Reports, 2026, 40(2): 24090232 -9 .
[10] YANG Hao, LI Tai, ZHANG Guangxin, LYU Guoqiang, CHEN Xiuhua. Research Progress on Preparation Methods and Defect Control of Silicon Carbide Single Crystal[J]. Materials Reports, 2026, 40(2): 24100235 -13 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed