| INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
| Research Progress on Preparation Methods and Defect Control of Silicon Carbide Single Crystal |
| YANG Hao1,2, LI Tai1,2, ZHANG Guangxin1,2, LYU Guoqiang1,2,*, CHEN Xiuhua3
|
1 School of Metallurgy and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China 2 Yunnan Silicon Industry Engineering Research Center, Kunming 650093, China 3 School of Materials and Energy, Yunnan University, Kunming 650091, China |
|
|
|
|
Abstract As the third generation semiconductor, silicon carbide (SiC) has excellent characteristics such as wide band gap, high carrier mobility, high thermal conductivity and good stability. It has great potential in the field of power electronic devices, especially in high temperature, high frequency, high power and other application scenarios. The primary techniques currently used for SiC crystal growth include physical vapor transport (PVT), high-temperature chemical vapor deposition (HTCVD), and top-seed solution growth (TSSG). During the growth and epitaxy of SiC single crystals, various types of defects inevitably arise, which can significantly affect the performance of semiconductor devices. This is manifested in reduced breakdown voltage, increased leakage current, and changes in on-resistance. Such performance variations not only diminish the efficiency and reliability of the devices but may also lead to complete device failure. Therefore, in order to improve the yield and performance of SiC semiconductor devices, it is very important to reduce and control various defects generated during the growth of SiC crystals before device fabrication. In this paper, the current preparation methods of SiC single crystal, the defects produced in the growth process of SiC crystal and their detection technology are summarized. The transformation and influencing factors between the defects produced in the growth process of SiC crystal are analyzed and studied, and the methods to reduce the defect density of SiC single crystal are discussed. Finally, the development direction of defect control technology in the growth process of SiC single crystal is prospected.
|
|
Published: 25 January 2026
Online: 2026-01-27
|
|
|
|
|
1 Lely J A. Berichte der Deutschen Keramischen Gesellschaft, 1955, 32, 229. 2 Tairov Y M, Tsvetkov V F. Journal of Crystal Growth, 1978, 43(2), 209. 3 Liang G, Qian H, Su Y, et al. China Foundry, 2023, 20(2), 159. 4 Yang Y B, Wang J, Wang Y M. Journal of Crystal Growth, 2018, 504, 31. 5 Nishizawa S I, Kato T, Kitou Y, et al. Materials Science Forum, 2004, 457-460(I), 29. 6 Meyer C, Philip P. Crystal Growth & Design, 2005, 5(3), 1145. 7 Chen X, Nishizawa S, Kakimoto K. Journal of Crystal Growth, 2010, 312(10), 1697. 8 Yan J Y, Chen Q S, Jiang Y N, et al. Journal of Crystal Growth, 2014, 385, 34. 9 Choi J W, Kim J G, Jang B K, et al. Materials Science Forum, 2019, 963, 18. 10 Zhang F, Yang K, Liu X, et al. In: 2020 17th China International Forum on Solid State Lighting & 2020 International Forum on Wide Bandgap Semiconductors. China, 2020, pp. 19. 11 Tymicki E, Grasza K, Racka K, et al. Materials Science Forum, 2009, 615, 15. 12 Yeo I G, Lee T W, Park J H, et al. Materials Science Forum, 2011, 679, 40. 13 Shin H W, Lee H J, Kim H J, et al. Materials Science Forum, 2016, 858, 113. 14 Makarov Y, Litvin D, Vasiliev A, et al. Materials Science Forum, 2016, 858, 101. 15 Fan W, Qu H, Chang S I, et al. Materials Science Forum, 2019, 963, 22. 16 Zhang S, Fu G, Cai H, et al. Materials, 2023, 16(2), 767. 17 Xu B, Han X, Xu S, et al. Journal of Crystal Growth, 2023, 614, 127238. 18 Chen Y, Chen S, Yang B. Crystal Research and Technology, 2023, 58(12), 2300147. 19 Hoshino N, Kamata I, Tokuda Y, et al. Journal of Crystal Growth, 2017, 478, 9. 20 Ellison A, Magnusson B, Sundqvist B, et al. Materials Science Forum, 2004, 457, 9. 21 Tokuda Y, Makino E, Sugiyama N, et al. Journal of Crystal Growth, 2016, 448, 29. 22 Kim S, Suh S, Jeong J K, et al. Journal of Nanoscience and Nanotech-nology, 2017, 17(11), 8344. 23 Hoshino N, Kamata I, Tokuda Y, et al. Applied Physics Express, 2014, 7(6), 065502. 24 Kito Y, Makino E, Ikeda K, et al. Materials Science Forum, 2006, 527, 107. 25 Jeong S M, Kim K H, Yoon Y J, et al. Journal of Crystal Growth, 2012, 357, 48. 26 Kang Y, Yoo C H, Nam D H, et al. Journal of Crystal Growth, 2018, 485, 78. 27 Tokuda Y, Hoshino N, Kuno H, et al. Materials Science Forum, 2020, 1004, 5. 28 Okamoto T, Kanda T, Tokuda Y, et al. Materials Science Forum, 2020, 1004, 14. 29 Kamata I, Hoshino N, Tokuda Y, et al. Materials Science Forum, 2016, 858, 61. 30 Ujihara T, Maekawa R, Tanaka R, et al. Journal of Crystal Growth, 2008, 310(7-9), 1438. 31 Hofmann D H, Müller M H. Materials Science and Engineering: B, 1999, 61, 29. 32 Daikoku H, Kado M, Seki A, et al. Crystal Growth & Design, 2016, 16(3), 1256. 33 Harada S, Hatasa G, Murayama K, et al. Materials Science Forum, 2017, 897, 32. 34 Narumi T, Kawanishi S, Yoshikawa T, et al. Journal of Crystal Growth, 2014, 408, 25. 35 Hyun K Y, Taishi T, Suzuki K, et al. Materials Science Forum, 2018, 924, 43. 36 Kusunoki K, Kamei K, Okada N, et al. Materials Science Forum, 2006, 527, 119. 37 Kusunoki K, Okada N, Kamei K, et al. Journal of Crystal Growth, 2014, 395, 68. 38 Choi S H, Kim Y G, Shin Y J, et al. Materials Science Forum, 2018, 924, 27. 39 Mercier F, Nishizawa S. Journal of Crystal Growth, 2011, 318(1), 385. 40 Kawanishi S, Kamiko M, Yoshikawa T, et al. Crystal Growth & Design, 2016, 16(9), 4822. 41 Zhu C, Harada S, Seki K, et al. Crystal Growth & Design, 2013, 13(8), 3691. 42 Chen P C, Miao W C, Ahmed T, et al. Nanoscale Research Letters, 2022, 17(1), 30. 43 Heydemann V D, Schulze N, Barrett D L, et al. Applied Physics Letters, 1996, 69(24), 3728. 44 Nishiguchi T, Furusho T, Isshiki T, et al. In: 12th International Confe-rence on Silicon Carbide and Related Materials. Japan, 2009, pp. 600. 45 Ohtani N. Wide Bandgap Semiconductors for Power Electronics: Materials, Devices, Applications, 2021, 1, 1. 46 Matsuhata H, Sugiyama N, Chen B, et al. Microscopy, 2017, 66(2), 95. 47 Feng G, Suda J, Kimoto T. Physica B: Condensed Matter, 2009, 404(23-24), 4745. 48 Guziewski M, Montes de Oca Zapiain D, Dingreville R, et al. ACS Applied Materials & Interfaces, 2021, 13(2), 3311. 49 Wutimakun P, Buteprongjit C, Morimoto J. Journal of Crystal Growth, 2009, 311(14), 3781. 50 Ohtani N. ECS Transactions, 2011, 41(8), 253. 51 Yamamoto Y, Harada S, Seki K, et al. Applied Physics Express, 2012, 5(11), 115501. 52 Hong M H, Samant A V, Pirouz P. Philosophical Magazine A, 2000, 80(4), 919. 53 Zhao L. Nanotechnology and Precision Engineering, 2020, 3(4), 229. 54 Henry A, ul Hassan J, Bergman J P, et al. Chemical Vapor Deposition, 2006, 12(8-9), 475. 55 Benamara M, Zhang X, Skowronski M, et al. Applied Physics Letters, 2005, 86(2),021905. 56 Hassan J, Henry A, McNally P J, et al. Journal of Crystal Growth, 2010, 312(11), 1828. 57 Nakashima S, Mitani T, Tomobe M, et al. AIP Advances, 2016, 6(1), 015207. 58 Kimoto T. Progress in Crystal Growth and Characterization of Materials, 2016, 62(2), 329. 59 Das H, Melnychuk G, Koshka Y. Journal of Crystal Growth, 2010, 312(12-13), 1912. 60 Kimoto T, Itoh A, Matsunami H, et al. Journal of Applied Physics, 1997, 81(8), 3494. 61 Syväjärvi M, Yakimova R, Janzén E. Journal of Crystal Growth, 2002, 236(1-3), 297. 62 Zhang Z, Cai H, Gan D, et al. CrystEngComm, 2019, 21(7), 1200. 63 Isshiki T, Hasegawa M. Materials Science Forum, 2015, 821, 307. 64 Konishi K, Yamamoto S, Nakata S, et al. Journal of Applied Physics, 2013, 114(1),014504. 65 Hidalgo P, Ottaviani L, Idrissi H, et al. European Physical Journal-Applied Physics, 2004, 27(1-3), 231. 66 Chikvaidze G, Mironova-Ulmane N, Plaude A, et al. Latvian Journal of Physics and Technical Sciences, 2014, 51(3), 51. 67 Feng X, Zang Y. In: 3rd International Conference on Mechatronics and Information Technology (ICMIT). China, 2016, pp. 829. 68 Luo H, Li J, Yang G, et al. ACS Applied Electronic Materials, 2022, 4(4), 1678. 69 Mahajan S, Rokade M V, Ali S T, et al. Materials Letters, 2013, 101, 72. 70 Katsuno M, Ohtani N, Takahashi J, et al. Silicon carbide, iii-nitrides and related materials, pts 1 and 2, Pensl G, Morkoc H, Monemar B, Janzen E, Eds. 1998, pp. 837. 71 Steckl A J, Roth M D, Powell J A, et al. Applied Physics Letters, 1993, 62(20), 2545. 72 Fukushima Y, Chanthaphan A, Hosoi T, et al. Applied Physics Letters, 2015, 106(26), 261604. 73 Yao Y Z, Ishikawa Y, Sugawara Y, et al. Japanese Journal of Applied Physics, 2011, 50(7R), 075502. 74 Olivier E J, Neethling J H. International Journal of Refractory Metals and Hard Materials, 2009, 27(2), 443. 75 Zhu C, Harada S, Seki K, et al. Crystal Growth & Design, 2013, 13(8), 3691. 76 Maximenko S I, Freitas J A, Klein P B, et al. Applied Physics Letters, 2009, 94(9), 092101. 77 Senzaki J, Hayashi S, Yonezawa Y, et al. In: 2018 IEEE International Reliability Physics Symposium (IRPS). Burlingame, 2018, pp.3B. 3-1. 78 Ma P, Ni J, Sun J, et al. Applied Optics, 2020, 59(6), 1746. 79 Hundhausen M, Püsche R, Röhrl J, et al. Physica Status Solidi B-Basic Solid State Physics, 2008, 245(7), 1356. 80 Tajima M, Higashi E, Hayashi T, et al. In: International Conference on Silicon Carbide and Related Materials (ICSCRM 2005). Pittsburgh, 2006, pp. 711. 81 Peng H, Liu Y, Ailihumaer T, et al. ECS Transactions, 2021, 104(7), 147. 82 Feng X, Zang Y. In: 3rd International Conference on Mechatronics and Information Technology (ICMIT). China, 2016, pp. 829. 83 Matsuhata H, Yamaguchi H, Sekiguchi T, et al. Electrical Engineering in Japan, 2016, 197(3), 3. 84 Yazdanfar M, Leone S, Pedersen H, et al. In: 14th International Confe-rence on Silicon Carbide and Related Materials (ICSCRM 2011). Cleveland, 2012, pp. 109. 85 Dong L, Sun G S, Yu J, et al. In: 15th International Conference on Silicon Carbide and Related Materials (ICSCRM). Japan, 2014, pp. 354. 86 Kojima K, Nishizawa S, Kuroda S, et al. Journal of Crystal Growth, 2005, 275(1-2), e549. 87 Kamata I, Tsuchida H, Jikimoto T, et al. Japanese Journal of Applied Physics, 2000, 39(12R), 6496. 88 Nakamura D, Kimoto T. Japanese Journal of Applied Physics, 2020, 59(9), 095502. 89 Dhanaraj G, Chen Y, Chen H, et al. In: Symposium on Silicon Carbide-Materials, Processing and Devices held at the 2006 MRS Spring Meeting. San Francisco, 2006, pp. 157. 90 Wang H, Wu F, Byrappa S, et al. Applied Physics Letters, 2012, 100(17), 172105. 91 Harada S, Yamamoto Y, Seki K, et al. Acta Materialia, 2014, 81, 284. 92 Kimoto T. Japanese Journal of Applied Physics, 2015, 54(4), 040103. 93 Nakamura D, Gunjishima I, Yamaguchi S, et al. Nature, 2004, 430(7003), 1009. 94 Chen X F, Zhang F S, Yang X L, et al. Materials Science Forum, 2017, 897, 19. 95 Komatsu N, Mitani T, Hayashi Y, et al. Materials Science Forum, 2019, 963, 71. |
|
|
|