Please wait a minute...
材料导报  2026, Vol. 40 Issue (2): 24120065-10    https://doi.org/10.11896/cldb.24120065
  金属与金属基复合材料 |
电弧增材制造技术研究进展
张丽娇1,*, 祝弘滨1, 曲华2, 王振民3
1 中车工业研究院有限公司,北京 100170
2 国家高速列车青岛技术创新中心,山东 青岛 266111
3 华南理工大学机械与汽车工程学院,广州 510641
Research Progress of Wire Arc Additive Manufacturing Technology
ZHANG Lijiao1,*, ZHU Hongbin1, QU Hua2, WANG Zhenmin3
1 CRRC Industry Research Institute Co.,Ltd., Beijing 100170, China
2 Qingdao Technology Innovation Center for National High-speed Trains, Qingdao 266111, Shandong, China
3 School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510641, China
下载:  全 文 ( PDF ) ( 68406KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 电弧增材制造具有成形效率高、环境适应性强、加工成本低、装备操作简单等优势,已成为大型金属结构件成形的先进技术,对推动新材料的高质量发展具有重要作用。但由于电弧增材过程涉及电弧传质传热行为、熔覆金属的动力学行为、合金化控制等复杂物理化学过程,结构件的成形和性能的控制较为困难。本文从技术分类、硬件系统、软件系统、成形控制和性能优化等方面总结了国内外电弧增材的相关研究进展,系统梳理了电弧增材型件的控形控性策略,并对该技术的未来发展趋势进行展望,旨在为该领域的后续研究与工程应用提供有益参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张丽娇
祝弘滨
曲华
王振民
关键词:  电弧增材制造  成形控制  工艺优化  微观组织    
Abstract: Wire arc additive manufacturing has become an advanced forming technology for large metal parts for its advantages, such as high proces-sing efficiency, strong environmental adaptability, low processing cost, simple equipment operation and maintenance, which plays an important role in promoting the high-quality development of new materials. However, the process of wire arc additive manufacturing involves the mass and heat transfer of wire arc, dynamic behavior of deposited metal, and alloying control of additive parts, which make it difficult to control the formation and quality. This paper summarizes the research progress of wire arc additive manufacturing domestically and abroad from the aspects of technology classification, hardware system, software system, formation control and quality improvement, and sorts out the control strategy in formation and properties of wire arc additive parts systematically, and looks forward to its future development trend, which aims to provide useful reference for the subsequent research and engineering application in this field.
Key words:  wire arc additive manufacturing    forming control    process optimization    microstructure
出版日期:  2026-01-25      发布日期:  2026-01-27
ZTFLH:  TG444  
基金资助: 国家重点研发计划(2022YFB4300102)
通讯作者:  *张丽娇,硕士。现为中车工业研究院高级工程师,目前主要研究领域为先进材料增材制造技术。zlj198651@163.com   
引用本文:    
张丽娇, 祝弘滨, 曲华, 王振民. 电弧增材制造技术研究进展[J]. 材料导报, 2026, 40(2): 24120065-10.
ZHANG Lijiao, ZHU Hongbin, QU Hua, WANG Zhenmin. Research Progress of Wire Arc Additive Manufacturing Technology. Materials Reports, 2026, 40(2): 24120065-10.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24120065  或          https://www.mater-rep.com/CN/Y2026/V40/I2/24120065
1 Dai S, Zhu K Y, Wang S H, et al. Journal of Manufacturing Processes, 2010, 141, 789.
2 Lu B H, Li D C. Machine Building and Automation, 2013, 42(4), 1(in Chinese).
卢秉恒, 李涤尘. 机械制造与自动化, 2013, 42(4), 1.
3 Wang S S, Chen X J, Han X L, et al. Pharmaceutics, 2023, 15(2), 416.
4 Madhavadas V, Srivastava D, Chadha U, et al. Cirp Journal of Manufacturing Science and Technology, 2022, 39, 18.
5 Manapat J Z, Chen Q Y, Ye P, et al. Macromolecular Materials and Engineering, 2017, 302(9).
6 Kussmauk K, Schoch F W, Luckow H. Welding Journal, 1983, 9, 17.
7 Sarikaya M, Onler D B, Dagli S. Journal of Materials Research and Technology, 2024, 33, 5643.
8 Yadav A, Srivastava M, Jain P K. Structures, 2025, 72, 108228.
9 Zeng G, Han Z Y, Liang S J, et al. Materials China, 2014, 33(6), 376(in Chinese).
曾光, 韩志宇, 梁书锦, 等. 中国材料进展, 2014, 33(6), 376.
10 Pan Z X, Ding D H, Wu B T, et al. Transactions on Intelligent Welding Manufacturing, 2017, 3.
11 Wu B T, Pan Z X, Ding D H, et al. Journal of Manufacturing Processes, 2018, 35, 127.
12 Fu R, Tang S Y, Lu J P, et al. Materials and Design, 2021, 199, 109370.
13 Peng J, Liu Y B, Sun Q J, et al. Additive Manufacturing, 2021, 39, 101878.
14 Wang H J, Jiang W H, Quang J H, et al. Journal of Materials Processing Technology, 2004, 148(1), 93.
15 Ouyang J H, Wang H, Kovacevic R. Materials and Manufacturing Processes, 2002, 17(1), 103.
16 Ayarkwa K F, Williams S W, Ding J. Additive Manufacturing, 2017, 18, 186.
17 Huang Y M, Wu D, Zhang Z F, et al. Journal of Materials Processing Technology, 2017, 239, 92.
18 Wu B T, Ding D H, Pan Z X, et al. Journal of Materials Processing Technology, 2017, 250, 304.
19 Li Z X, Liu C M, Xu T Q, et al. Materials Science and Engineering: A, 2019, 743, 287.
20 Jandric Z, Labudovic M, Kovacevic R. International Journal of Machine Tools and Manufacture, 2004, 44(7-8), 785.
21 Bonaccorso F, Cantelli L, Muscato G. IEEE Transactions on Industrial Electronics, 2011, 58(8), 3126.
22 Tian Y, Ouyang B, Gontcharov A, et al. Journal of Alloys and Compounds, 2017, 694(15), 429.
23 Guo J, Zhou Y, Liu C, et al. Materials, 2016, 9, 823.
24 Takagi H, Sasahara H, Abe T, et al. Additive Manufacturing, 2018, 24, 498.
25 Martina F, Mehen J, Williams S W, et al. Journal of Materials Processing Technology, 2012, 212(6), 1377.
26 Li K, Klecka M A, Chen S, et al. Additive Manufacturing, 2021, 37, 101734.
27 Huang J K, Yang M H, Li T, et al. Journal of Shanghai Jiaotong University, 2016, 50(12), 1906(in Chinese).
黄健康, 杨茂鸿, 李挺, 等. 上海交通大学学报, 2016, 50(12), 1906.
28 Suarez A, Aldualur E, Veiga F, et al. Journal of Manufacturing Processes, 2021, 64, 188.
29 Xu F, Lv Y, Shu F, et al. Journal of Manufacturing Processes, 2013, 29(5), 480.
30 Gu J L, Bai J, Ding J L, et al. Journal of Materials Processing Technology, 2018, 262, 210.
31 Li F, Chen S, Shi J, et al. Applied Science, 2018, 8, 207.
32 Luo Y, Li J, Xu J, et al. Journal of Materials Processing Technology, 2018, 259, 353.
33 Zhang Y, Chen Y, Li P, et al. Journal of Materials Processing Technology, 2003, 135(2-3), 347.
34 Le V T, Mai D S, Paris H. Journal of Manufacturing Processes, 2021, 62, 18.
35 Scotti A, Ponomarev V, Lucas W. Journal of Materials Processing Technology, 2014, 214(11), 2488.
36 Xiong J, Lei Y, Li R. Applied Thermal Engineering, 2017, 126(5), 43.
37 Li Y, Su C, Zhu J. Results in Engineering, 2022, 13, 100330.
38 Shen C, Pan Z X, Ma Y, et al. Additive Manufacturing, 2015, 7, 20.
39 Abe T, Sasahara H. Precision Engineering, 2016, 45, 387.
40 Martina F, Ding J L, Williams S, et al. Additive Manufacturing, 2019, 25, 545.
41 Feng Y, Zhan B, He J, et al. Journal of Materials Processing Technology, 2018, 259, 206.
42 Wang Z M, Jiang D H, Wu J W, et al. Electric Welding Machine, 2020, 50(9), 186(in Chinese).
王振民, 江东航, 吴健文, 等. 电焊机, 2020, 50(9), 186.
43 Mituno M. Welding International, 2011, 25(8), 596.
44 Wang Z M, Wang Q, Wang P F, et al. Transactions of the China Welding Institution, 2016, 37(7), 49(in Chinese).
王振民, 汪倩, 王鹏飞, 等. 焊接学报, 2016, 37(7), 49.
45 Kang L F, Cai Y, Zhang Y L, et al. Hot Working Technology, 2017, 46(13), 84(in Chinese).
康凌风, 蔡艳, 张跃龙, 等. 热加工工艺, 2017, 46(13), 84.
46 Wu J W, Xu M J, Fan W Y, et al. Journal of Mechanical Engineering, 2020, 56(6), 102(in Chinese).
吴健文, 徐孟嘉, 范文艳, 等. 机械工程学报, 2020, 56(6), 102.
47 Wu J W. Research on the technology and mechanism of Inconel 718 nickel-based superalloy fast-frequency pulsed TIG welding based on large fast-frequency pulsed band waveform. Ph. D. Thesis, South China University of Technology, China, 2023(in Chinese).
吴健文. Inconel 718镍基高温合金大快频带波形快频脉冲TIG焊接工艺及机理研究. 博士学位论文, 华南理工大学, 2023.
48 Veiga F, Gil Del Val A, Suarez A, et al. Materials, 2020, 13, 766.
49 Hauser T, Reisch R T, Breese P P, et al. Additive Manufacturing, 2021, 41, 101993.
50 Liu L. Research on laser vision-based arc welding robot deflection correction system in additive manufacturing. Master’s Thesis, Xiangtan University, China, 2023(in Chinese).
刘恋. 基于激光视觉弧焊机器人增材制造过程纠偏系统研究. 硕士学位论文, 湘潭大学, 2023.
51 Kim D W, Choi J S, Nanji B O. International Journal of Production Research, 1998, 36(4), 957.
52 Dolgui A, Pashkevich A, Semkin K. In:The 6th IEEE International Symposium on Assembly and Task Planning. Montreal, 2005, pp. 1.
53 Gueta L B, Chiba R, Ota J, et al. In: IEEE International Conference on Robotics and Automation. Pasadena, 2008, pp. 2252.
54 Kapustka N, Harris I D. Welding Journal, 2014, 93, 32.
55 Ding D, Pan Z, Cuiuri D, et al. Robot and Computer-Integrated Manufacturing, 2016, 39, 32.
56 Zhang Y, Chen Y, Li P, et al. Journal of Materials Processing Technology, 2003, 135, 347.
57 Singh P, Dutta D. Journal of Computing and Information Science in Engineering, 2001, 1, 129.
58 Dunlavey M R. ACM Transactions on Graphics, 1983, 2, 264.
59 Park S C, Choi B K. Computer-Aided Design, 2000, 32, 17.
60 Rajan V, Srinivasan V, Tarabanis K A. Rapid Prototyping Journal, 2001, 7, 231.
61 Fariuki R, Koening T, Tarabanis K, et al. Journal of Manufacturing Systems, 1995, 14, 355.
62 Yang Y, Loh H, Fuh J, et al. Rapid Prototyping Journal, 2002, 8, 30.
63 Li H, Dong Z, Vickers gw. Computer-Aided Design, 1994, 26, 787.
64 Xiao Y, Chen X, Hu J N, et al. Welding and Joining, 2020(7), 42(in Chinese).
肖宇, 陈曦, 胡建南, 等, 焊接, 2020(7), 42.
65 Szymanik B, Psuj G, Hashemi M, et al. Materials, 2021, 14, 4168.
66 Wang Z, Chen H, Zhong Q, et al. The International Journal of Advanced Manufacturing Technology, 2022, 119, 5439.
67 Ding J Q. Research on characteristic of MAG weld pool visual image and control model in one-side welding with back formation weld. Master’s Thesis, Nanjing University of Science and Technology, China, 2010(in Chinese).
丁洁琼. MAG焊单面焊双面成形熔池视觉特征与控制模型研究. 硕士学位论文, 南京理工大学, 2010.
68 Fan H, Ravala N K, Wikle III H C, et al. Journal of Materials Processing Technology, 2003, 140(1-3), 668.
69 Zhan Q, Liang Y, Ding J, et al. The International Journal of Advanced Manufacturing Technology, 2016, 89, 755.
70 Xu Y, Yu H, Zhong J, et al. Journal of Materials Processing Technology, 2012, 212(8), 1654.
71 Xu Y, Fang G, Lv N A, et al. Robotics and Computer-Integrated Manufacturing, 2015, 32, 25.
72 Tang S, Wang G, Zhang H, et al. In: Proceedings of the 28th Annual International Solid Freeform Fabrication Symposium-an Additive Manufacturing Conference. Austin, 2017, pp. 1965.
73 Zhang Z, Yu H, Lv N A, et al. Journal of Materials Processing Technology, 2013, 213(7), 1146.
74 Pal K, Bhattacharya S, Pal S K. Journal of Materials Processing Technology, 2010, 210(10), 1397.
75 Rieder H. In: 1th European Conference on Non-destructive Testing. Prague, 2014.
76 Slotwinski J A. In: AIP Conference Proceedings. Baltimore, 2014, pp. 1197.
77 Pringle A M, Oberloier S, Petsiuk A L, et al. HardwareX, 2020, 8, e00137.
78 Wang P, Zhang H, Zhu H, et al. Journal of Materials Processing Technology, 2021, 288, 116895.
79 Lervag M, Sorensen C, Robertstad A, et al. Metals, 2020, 10, 272.
80 Wang S, Gu H, Wang W, et al. Metals, 2020, 10, 79.
81 Xiong J, Zhang G, Zhang W. International Journal of Advanced Manufacturing Technology, 2015, 80, 1767.
82 Esscobar P G, Gault R, Ridgway K. IOP Conference Series: Materials Science and Engineering, 2011, 26, 012002.
83 Zhou L Z, Liu S H, Ding D P, et al. China Mechanical Engineering, 2006, 17(24), 2622(in Chinese).
周龙早, 刘顺洪, 丁冬平, 等. 中国机械工程, 2006, 17(24), 2622.
84 Abe T, Kaneko J, Sasahara H, et al. Additive Manufacturing, 2020, 35, 101357.
85 Cong B Q, Su Y, Qi B J, et al. Aerospace Manufacturing Technology, 2016(3), 29(in Chinese).
从保强, 苏勇, 齐铂金, 等. 航天制造技术, 2016(3), 29.
86 Wang S, Gu H, Wang W, et al. Materials, 2020, 13(1), 73.
87 Yin Y H, Hu S S, Liu W L, et al. Ordnance Material Science and Engineering, 2008, 31(4), 55(in Chinese).
尹玉环, 胡绳荪, 刘望兰, 等. 兵器材料科学与工程, 2008, 31(4), 55.
88 Spencer J D, Dickens P M, Wykes C M. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 1998, 212, 175.
89 Bo J Y, Wang J H, Lin S B, et al. Journal of Mechanical Engineering, 2016, 52(10), 97(in Chinese).
柏久阳, 王计辉, 林三宝, 等. 机械工程学报, 2016, 52(10), 97.
90 Ju H T. Synergistic optimization of additive manufacturing process and microstructure in titanium alloys based on CA-FE simulation. Ph. D. Thesis, University of Science and Technology of China, China, 2024(in Chinese).
鞠洪涛. 基于CA-FE模拟的钛合金增材制造工艺与组织协同优化研究. 博士学位论文, 中国科学技术大学, 2024.
91 Shen Z G. Research on TIG arc additive manufacturing process and strengthening mechanism of TiB2 particle reinforced 7075 aluminum matrix composites. Ph. D. Thesis, Taiyuan University of Science and Technology, China, 2024(in Chinese).
申志刚. TiB2颗粒增强的 7075 铝基复合材料 TIG 电弧增材制造工艺与强化机理研究. 博士学位论文, 太原科技大学, 2024.
92 Ke W C. Research on formation mechanisms and properties in wire arc additive manufacturing of NiTi shape memory alloys. Ph. D. Thesis, University of Electronic Science and Technology, China, 2023(in Chinese).
柯文超. NiTi形状记忆合金电弧增材制造及成形成性机理研究. 博士学位论文, 电子科技大学, 2023.
93 Kuang Y W, Hu J L, Liao H P, et al. Journal of Manufacturing Processes, 2024, 131, 52.
94 Liao H P, Wang Z M, Chi P, et al. Materials Science and Engineering: A, 2024, 898, 146365.
95 Liao H P, Kuang Y W, Zhou D H, et al. Construction and Building Materials, 2024, 457, 139510.
96 Liao H P, Wang Z M, Chi P, et al. Journal of Manufacturing Processes, 2024, 118, 389.
[1] 谢树磊, 欧美琼, 侯坤磊, 王旻, 马颖澈. Mo、W对多晶铸造镍基高温合金组织及应用性能影响的研究进展[J]. 材料导报, 2026, 40(1): 24110085-11.
[2] 王柯涵, 刘涵, 宗骁, 梁永锋, 南海, 林均品, 丁贤飞. TiAl合金片层组织不连续粗化转变[J]. 材料导报, 2026, 40(1): 24120163-7.
[3] 刘同旭, 王子君, 张新颖, 陈晓明, 朱广林, 郭策安. 电火花沉积工艺的研究现状和发展趋势[J]. 材料导报, 2025, 39(8): 24030203-9.
[4] 杨旭, 张天理, 朱志明, 徐连勇, 陈赓, 杨尚磊, 方乃文. 纳米颗粒对铝合金焊接凝固裂纹抑制机理及影响因素的研究进展[J]. 材料导报, 2025, 39(6): 24030070-10.
[5] 姚未怡, 卜恒勇. 轧制态7050铝合金双道次热变形微观组织演变[J]. 材料导报, 2025, 39(4): 23120032-8.
[6] 巩晓乐, 赵红运, 陈吉华, 严红革. 基于生物医用镁合金的腐蚀行为及其影响因素[J]. 材料导报, 2025, 39(21): 24100045-12.
[7] 王银晨, 常云峰, 秦志伟, 张亮亮, 董红刚, 程亚芳, 郭鹏, 李鹏. TiAl系合金和镍基高温合金连接技术研究进展[J]. 材料导报, 2025, 39(21): 24100004-15.
[8] 王帅, 卿华, 卢照, 姚青荣, 陈泽炜, 王语菡, 张雅, 田伟庆, 谈敦铭, 赵叶曼. 电脉冲处理对TC4钛合金组织及力学性能的影响[J]. 材料导报, 2025, 39(21): 24090220-6.
[9] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[10] 宫晓威, 常庆明, 常佳琦, 鲍思前. 平面流铸制备Fe-3%Si硅钢微观组织的数值模拟[J]. 材料导报, 2025, 39(2): 23090214-7.
[11] 梁文杰, 董强胜, 章晓波. 增材制造铝合金组织结构与性能研究进展[J]. 材料导报, 2025, 39(19): 24100182-15.
[12] 敬学锐, 吴雄, 王森巍, 肖辉, 佘加, 汤爱涛, 王敬丰. 轨交用Mg-9Al-0.1Mn-xCa挤压合金的组织与力学性能研究[J]. 材料导报, 2025, 39(18): 24070127-6.
[13] 夏正辉, 汪丹丹, 丁健翔, 张培根, 田无边, 王丽瑶, 李大平, 魏坤霞, 魏伟, 孙正明. MAX相增强金属基复合材料的研究进展[J]. 材料导报, 2025, 39(17): 24100130-17.
[14] 龚海军, 王玲, 亢红叶, 左乾隆, 安治国, 高正源. 铝合金粉末80 μm大层厚SLM成型熔池形貌与组织演变[J]. 材料导报, 2025, 39(16): 24080006-7.
[15] 李波, 许龙, 杨涵, 杜勇. 均匀化处理对时效强化Al-Mg-Zn-Sc-Zr合金微观组织与性能的影响[J]. 材料导报, 2025, 39(16): 24070104-6.
[1] HUANG Xurui, YU Yutian, LEI Jinyong, HAO Jingxuan, YU Chuanxin, PAN Jun, YANG Yiping, LIAO Zihao, GUAN Chengzhi, WANG Jianqiang. Application of Electrically-conductive (Cu, Mn)3O4 Contact Layer on Anode-Side of SOEC[J]. Materials Reports, 2024, 38(8): 23040278 -4 .
[2] REN Weixin, CAO Shengfei, DAI Wenjie, XIE Jingli, ZHANG Qi. Progress in Research on Shear Characteristics of Buffer Materials for High-level Radioactive Waste Repositories[J]. Materials Reports, 2025, 39(23): 25010172 -11 .
[3] JIANG Yue, XIAO Mingjun. Research Progress of High-entropy Oxides in Electrode Materials for Sodium-ion Batteries[J]. Materials Reports, 2025, 39(24): 25010122 -9 .
[4] MA Shuo, JIANG Yi, GAO Xiaojian. The Influence Law and Mechanism of C-S-H Seed on the Strength of Steam Curing Cement-based Materials[J]. Materials Reports, 2025, 39(24): 24120059 -7 .
[5] HU Jianlin, ZHAO Yuxuan, ZHOU Yongxiang, LENG Faguang, DU Xiuli. Dynamic Properties of Geopolymer-Cemented Soils and Fitting Analysis of Their Dynamic Constitutive Model[J]. Materials Reports, 2025, 39(24): 25010113 -9 .
[6] . [J]. Materials Reports, 2026, 40(1): 0 .
[7] ZHANG Minxia. Experimental Study on Influencing Factors and Mechanism of Microbial Soil Improvement Effect[J]. Materials Reports, 2026, 40(1): 24120104 -8 .
[8] . [J]. Materials Reports, 2026, 40(2): 0 .
[9] QU Shaopeng, ZHANG Haiqiang, YANG Lujia, LI Xin, HE Dongyu. Research Status and Development Trends of Transport Materials for Offshore Wind to Hydrogen[J]. Materials Reports, 2026, 40(2): 25020154 -11 .
[10] YU Hao, DENG Wenjun, WANG Yongfei, LUO Dawei. Research Progress of Electrolyte for Anode-free Lithium Metal Batteries[J]. Materials Reports, 2026, 40(2): 24110166 -8 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed