Please wait a minute...
材料导报  2025, Vol. 39 Issue (20): 24100089-13    https://doi.org/10.11896/cldb.24100089
  金属与金属基复合材料 |
6xxx铝合金耐蚀性能的研究进展
谢苗1, 付俊伟3,*, 赵茂密2, 卢照1
1 桂林电子科技大学材料科学与工程学院,广西 桂林 541004
2 广西科学院,广西海洋科学院,广西近海海洋环境科学重点实验室,南宁 530007
3 中国科学院海洋研究所,海洋关键材料全国重点实验室,海洋环境腐蚀与生物污损重点实验室,山东 青岛 266071
Research Progress on the Corrosion Resistance of 6xxx Aluminium Alloys
XIE Miao1, FU Junwei3,*, ZHAO Maomi2, LU Zhao1
1 School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, Guangxi, China
2 Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning 530007, China
3 Key Laboratory of Marine Environmental Corrosion and Bio-fouling, State Key Laboratory of Advanced Marine Materials, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, Shandong, China
下载:  全 文 ( PDF ) ( 92238KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 6xxx铝合金因成本低且具有良好的耐腐蚀性和优异的力学性能而广泛应用在汽车工业、建筑工业、船舶等领域。本文从合金化、热处理等角度综述了6xxx系铝合金耐蚀性能的最新研究进展。首先讨论了6xxx系铝合金耐蚀性能的主要影响因素:时效处理、m(Mg)/m(Si)与Cu含量、总m(Mg+Si)含量。在人工时效中,晶间腐蚀的敏感程度随时效时间的延长而增加。中断时效和非等温时效中,针状β″相的粗化、离散化,以及晶界无沉淀析出区的不连续分布,提高了合金的耐蚀性能。在相同时效条件下,含Cu合金的晶间腐蚀严重程度高于不含Cu合金,随着Cu含量的增加、m(Mg)/m(Si)值的降低以及总m(Mg+Si)含量的增加,晶间腐蚀的严重程度也逐渐加剧。其次,从单合金化和多合金化角度讨论了微合金化对6xxx系铝合金耐蚀性能的影响:添加适量的微量元素可以提高合金的耐蚀性能。最后,对6xxx系铝合金未来的发展方向提出了建议和展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
谢苗
付俊伟
赵茂密
卢照
关键词:  6xxx系铝合金  晶间腐蚀  热处理  微合金化  时效    
Abstract: 6xxx aluminum alloys are widely used in automobile industry, construction industry, shipbuilding and other fields because of their advantages such as low cost, good corrosion resistance and excellent mechanical properties. In this paper, the latest research progress of corrosion resistance of 6xxx series aluminum alloys was reviewed in terms of alloying and heat treatment. Firstly, the main factors affecting the corrosion resistance of 6xxx series aluminum alloy, including aging treatment, m(Mg)/m(Si) ratio and Cu content, total m(Mg+Si) content, were discussed. In artificial aging, the sensitivity of intergranular corrosion increases with the extension of aging time. During interrupted aging and non-isothermal aging, the coarsening and discretization of needle-like β phase and the discontinuous distribution of precipitation-free zone at grain boundary improve the corrosion resistance of the alloy. Under the same aging conditions, intergranular corrosion of Cu-containing alloys is more serious than that of the alloys without Cu addition. With the increase of Cu content, the decrease of m(Mg)/m(Si) ratio and the increase of total m(Mg+Si) content both increase intergranular corrosion gradually. Secondly, the influence of microalloying on the corrosion resistance of 6xxx series aluminum alloys is discussed based on the single alloying and multi-alloying. It is demonstrated that addition of appropriate trace elements can improve the corrosion resistance of the alloys. Finally, a brief summary is made, and suggestions and prospects for the future development of 6xxx series aluminum alloys are put forward.
Key words:  6xxx series aluminum alloy    intergranular corrosion    heat treatment    microalloying    aging
发布日期:  2025-10-27
ZTFLH:  TB31  
基金资助: 广西科技计划项目(桂科AB23026059);广西科技计划(桂科AA23026007);中国科学院海洋研究所启动基金(E12822101Q)
通讯作者:  *付俊伟,博士,中国科学院海洋研究所研究员,硕士研究生导师。主要从事金属材料的组织及性能控制、金属材料的腐蚀原理及腐蚀技术、高性能金属材料的设计及制备等方面的研究。fujw@qdio.ac.cn   
作者简介:  谢苗,桂林电子科技大学材料科学与工程学院硕士研究生,在付俊伟研究员和卢照副研究员的指导下进行研究。目前主要从事Al-Mg-Si合金耐蚀性能方面的研究。
引用本文:    
谢苗, 付俊伟, 赵茂密, 卢照. 6xxx铝合金耐蚀性能的研究进展[J]. 材料导报, 2025, 39(20): 24100089-13.
XIE Miao, FU Junwei, ZHAO Maomi, LU Zhao. Research Progress on the Corrosion Resistance of 6xxx Aluminium Alloys. Materials Reports, 2025, 39(20): 24100089-13.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24100089  或          https://www.mater-rep.com/CN/Y2025/V39/I20/24100089
1 Miller W S, Zhuang L, Bottema J, et al. Materials Science and Engineering, 2000, 280, 37.
2 Hung N, Marion M. Reports on Progress in Physics, 2012, 39, 318.
3 Knight S P, Pohl K, Holroyd N J H, et al. Corrosion Science, 2015, 98, 50.
4 Zhou B, Wang Y, Zuo Y. Applied Surface Science, 2015, 357, 735.
5 Liang W J, Rometsch P A, Cao L F, et al. Corrosion Science, 2013, 76, 119.
6 Svenningsen G, Lein J E, Bjorgum A, et al. Corrosion Science, 2006, 48, 226.
7 Minoda T, Yoshida H. Metallurgical and Materials Transactions A, 2002, 33, 2891.
8 Fleming K M, Zhu A, Scully J R. Corrosion, 2012, 68, 1126.
9 Eckermann F, Suter T, Uggowitzer P J, et al. Corrosion Science, 2008, 50, 3455.
10 Marioara C D, Andersen S J, Jansen J, et al. Acta Materialia, 2001, 49, 321.
11 Matsuda K, Teguri D, Sato T, et al. Materials Transactions, 2007, 48, 967.
12 Matsuda K, Teguri D, Uetani Y, et al. Scripta Materialia, 2002, 47, 833.
13 Ringer S P, Hono K. Materials Characterization, 2000, 44, 101.
14 Jiang S, Jiang Y, Wang R. Journal of Materials Science & Technology, 2019, 35(70), 1354.
15 Zheng Y, Luo B, Bai Z, et al. Acta Materialia, 2017, 7(10), 387.
16 Li J H, An Z H, Fredrik S H, et al. Materials Science and Engineering: A, 2019, 760, 366.
17 Kisasoz A. Materials Testing, 2018, 60, 478.
18 Zheng Y, Luo B, He C, et al. Materials Research Express, 2019, 6, 116582.
19 Svenningsen G, Lein J E, Bjørgum A, et al. Corrosion Science, 2006, 48(1), 226
20 Kairy S K, Rometsch P A, Davies C H J, et al. Corrosion, 2025, 71(11), 1304.
21 Zou Y, Liu Q, Jia Z, et al. Applied Surface Science, 2017, 405, 489.
22 Aluru Praveen Sekhar, Ashim Bikash Mandal, Debdulal Das. Journal of Materials Research and Technology, 2020, 9(1), 1005.
23 Tabrizi M R, Lyon S B, Thompson G E, et al. Corrosion Science, 1991, 32(7), 733.
24 Aluru Praveen Sekhar, Ashim Bikash Mandal, Debdulal Das. Metals and Materials International, 2021, 27, 5059.
25 El-Menshawy K, El-Sayed A W A, El-Bedawy M E, et al. Corrosion Science, 2012, 54, 167.
26 Sekhar A P, Das D. Materials and Corrosion, 2019, 70(11), 2052.
27 Schnatterer C, Altenbach C, Zander D. Materials and Corrosion, 2019, 70(7), 1205.
28 Lumley R N, Polmear I J. Materials Science and Technology, 2005, 9, 1025.
29 Buha J, Lumley R N, Crosky A G. The Philosophical Magazine A Journal of Theoretical Experimental and Applied Physics, 2008, 88(3), 373.
30 Risanti D D, Yin M, Zwaag S V D. Materials Science and Engineering: A, 2009, 523(1), 99.
31 Buha J, Lumley R N, Crosky A G. Metallurgical and Materials Transactions A, 2006, 37(10), 3119.
32 Buha J, Lumley R N, Crosky A G. Acta Materialia, 2007, 55(9), 3015.
33 Xu Xuehong, Deng Yunlai, Chi Shuiqing, et al. Journal of Materials Research and Technology, 2020, 9(1), 230.
34 Xu Xuehong, Deng Yunlai, Pan Qinglin, et al. Metallurgical and Materials Transactions, 2021, 52, 4907.
35 Guo R, Zhang C, Liu M, et al. Materials Characterization, 2020, 169, 110613.
36 Zhang X, Tang J, Li H, et al. Journal of Alloys and Compounds, 2020, 819, 152960.
37 Guo Cheng, Wang Huan, Guo Yuqin, et al. Corrosion Science, 2024, 229, 111878.
38 Zhou Yuan, Ji Qingqing, Jin Man. Materials and Corrosion, 2018, 60(5), 634.
39 Zheng Y Y, Luo Binghui, Wang Shuai, et al. Materials Science and Engineering, 2019, 562, 012064.
40 Zheng Y Y, Luo B H, He C, et al. Physics of Metals and Metallography, 2020, 121(13), 1295.
41 Hamed Jamshidi Aual. Transactions of Nonferrous Metals Society of China, 2024, 34(2), 408.
42 Man J, Jing L, Jie S G. Journal of Alloys and Compounds, 2007, 437, 146.
43 Ding L, Jia Z, Nie J, et al. Acta Mater, 2018, 145, 437.
44 Marioara C D, Andersen S J, Stene T N, et al. Philosophical Magazine, 2007, 87 (23), 3385.
45 Marioara C D, Andersen S J, Zandbergen H W, et al. Metallurgical and Materials Transactions A, 2005, 36, 691.
46 Bahrami A, Miroux A, Sietsma J. Metallurgical and Materials Transactions A, 2012, 43 (11), 4445.
47 Ehlers F J H, Wenner S, Andersen S J, et al. Journal of Materials Science, 2014, 49 (18), 6413.
48 Zou Yun, Liu Qing, Jia Zhihong, et al. Applied Surface Science, 2017, 405, 489.
49 Kairy S K, Rometsch P A, Davies C H J, et al. Corrosion, 2017, 73(10), 1280.
50 Gupta A K, Lloyd D J, Court S A. Materials Science and Engineering A, 2001, 316, 11.
51 Mukhopadhyay P. ISRN Metall, 2012, 15, 165082.
52 Zhong H, Rometsch P A, Estrin Y. Metallurgical and Materials Transactions A, 2013, 44 (8), 3970.
53 Wang Jiao, Luo Binghui, Zheng Yaya, et al. Transactions of Nonferrous Metals Society of China, 2017, 27(6), 1091(in Chinese).
王姣, 罗兵辉, 郑亚亚, 等. 中国有色金属学报, 2017, 27(6), 1091.
54 Yang Zhao, Fu Jiani, Xu Xuexuan, et al. Transactions of Nonferrous Metals Society of China, 2022, 32(6), 1617(in Chinese).
杨昭, 付嘉妮, 徐雪璇, 等. 中国有色金属学报, 2022, 32(6), 1617.
55 Ren Zhiwei, Luo Binghui, Zheng Yaya, et al. Materials Reports, 2019, 33(18), 3072(in Chinese).
任智炜, 罗兵辉, 郑亚亚, 等. 材料导报, 2019, 33(18), 3072.
56 Hou D D, Shan J Q, Cao G H, et al. Heat Treatment of Metals, 2017, 42(10), 209.
57 Jin Man, Kuang Xiuqin, Ji Qingqing, et al. Shanghai Metals, 2019, 41(4), 54(in Chinese).
金曼, 匡秀琴, 季清清, 等. 上海金属, 2019, 41(4), 54.
58 Kairy S K, Rouxel B, Dumbre J, et al. Corrosion Science, 2019, 158, 108095.
59 Wang Y, Gupta R K, Sukiman N L, et al. Corrosion Science, 2013, 73, 181.
60 Zou Y, Yan H, Yu B, et al. Intermetallic, 2019, 110, 106487.
61 Sun F, Nash G L, Li Q, et al. Journal of Material Science and Technology, 2017, 33, 1015.
62 Wu S H, Zhang P, Shao D, et al. Materials Science and Engineering A, 2018, 721, 200.
63 Liu Zhu, Sun Yuchong, Hou Zhonglin, et al. Materials Reports, 2024, 38(15), 60(in Chinese).
刘柱, 孙玉崇, 侯忠霖, 等. 材料导报, 2024, 38(15), 60.
64 Wang Xiaolu, Zhao Yutao, Jiao Lei, et al. Materials Reports, 2017, 31(18), 72(in Chinese).
王晓璐, 赵玉涛, 焦雷, 等. 材料导报, 2017, 31(18), 72.
65 Jia Zhihong, Weng Yaoyao, Ding Lipeng, et al. Materials Reports, 2017, 31(9), 123(in Chinese).
贾志宏, 翁瑶瑶, 丁立鹏, 等. 材料导报, 2017, 31(9), 123.
66 Marion Werinos, Helmut Antrekowitsch, Thomas EbnerH, et al. Acta Materialia, 2016, 118, 296.
67 Marion Werinos, Helmut Antrekowitsch, Ernst Kozeschnik, et al. Scripta Materialia, 2015, 112, 148.
68 Liu C, Ma P, Zhan L, et al. Scripta Materialia, 2018, 155, 68.
69 Wei Manxiang, Gao Sirui, Liu Hongliang, et al. Materials Reports, 2021, 35(S1), 311(in Chinese).
魏满想, 高思睿, 刘宏亮, 等. 材料导报, 2021, 35(S1), 311.
70 Maria N, Derek P, Robert J K W, et al. Journal of Power Sources, 2008, 178 (1), 445.
71 Liu X Y, Li M J, Gao F, et al. Journal of Alloys and Compounds, 2015, 639, 263.
72 He Chuan, Luo Binghui, Zheng Yaya, et al. Materials Characterization, 2019, 156, 109836.
73 Weng Yaoyao, Xu Yaqi, Ding Lipeng, et al. Materials Characterization, 2021, 179, 111383.
74 Lu Gang, Sun Bo, Wang Jianjun, et al. Journal of Materials Research and Technology, 2021, 14, 2165.
75 Changkyu K, Seongkoo C, Wonseog Y, et al. Corrosion Science, 2021, 183, 109339.
76 Xu P, Jiang F, Tang Z, et al. Journal of Alloys and Compounds, 2019, 781, 209.
77 Wang R, Jiang S, Chen B, et al. Journal of Materials Science & Technology, 2020, 57, 78.
78 Zandbergen H W, Andersen S J, Jansen J. Science, 1997, 277, 1221.
79 Wenner S, Jones L, Marioara C D, et al. Micron, 2017, 96, 103.
80 Andersen S J, Marioara C D, Frøseth A, et al. Materials Science and Engineering A, 2005, 390, 127.
81 Liu Y, Lai Y X, Chen Z Q, et al. Journal of Alloys and Compounds, 2021, 885, 160942.
82 Vissers R, van Huis M A, Jansen J, et al. Acta Materialia, 2007, 55 (11), 3815.
83 Chen H, Lu J, Kong Y, et al. Acta Materialia, 2020, 185, 193.
84 Wang S B, Pan C F, Wei B, et al. Journal of Materials Science & Technology, 2022, 110, 216.
85 Wei Bo, Pan Shuai, Liao Guizhen, et al. Materials & Design, 2022, 218, 110699.
86 Huang X, Pan Q, Li B, et al. Journal of Alloys and Compounds, 2015, 650, 805.
87 Hosseinifar M, Malakhov D V. Journal of Materials Science, 2008, 43(22), 7157.
88 Yuan W H, Liang Z Y, Zhang C Y, et al. Materials & Design, 2012, 34, 788.
89 Zheng Qiuju, Wu Jing, Jiang Hongxiang, et al. Corrosion Science, 2021, 179, 109113.
90 Arthanari S, Jang J C, Shin K S. Journal of Alloys and Compounds, 2019, 783, 494.
91 Eckermann F, Suter T, Uggowitzer P J, et al. Electrochimica Acta, 2008, 54 (2), 844.
92 Ly R, Karayan A I, Hartwig K T, et al. Electrochimica Acta, 2019, 308, 35.
93 Orłowska M, Ura-Bi′nczyk E, Olejnik L, et al. Corrosion Science, 2019, 148, 57.
94 Pan S, Chen X J, Liao G Z, et al. Rare Metals, 2023, 42(11), 3814.
95 He C, Luo B, Zheng Y, et al. Materials Characterization, 2019, 156, 109836.
96 Zheng Dehui, Li Jiahai, Wei Bo, et al. Journal of Materials Research and Technology, 2023, 27, 472.
97 Liao H C, Liu Y, Lü C L, et al. International Journal of Cast Metals Research, 2015, 28 (4), 213.
98 Dorin T, Ramajayam M, Babaniaris S, et al. Materialia, 2019, 8, 100437.
99 Wang R, Jiang S, Chen B, et al. Journal of Materials Science & Technology, 2020, 57, 78.
100 Bochvar N R, Rybalchenko O V, Leonova N P, et al. Journal of Alloys and Compounds, 2020, 821, 153426.
101 Wang Weiyi, Pan Qinglin, Wang Xiangdong, et al. Corrosion Science, 2024, 226, 111695.
[1] 谭会杰, 王海燕, 华连庚, 高雪云, 吕萌, 于大威, 邢磊. 稀土Ce对Fe-Ni-Al马氏体时效钢等温过程显微组织演变的影响[J]. 材料导报, 2025, 39(7): 24010236-6.
[2] 涂文斌, 胡志华, 邹雨柔, 刘冠鹏, 王善林, 陈玉华. 时效时间和Sb添加对Sn-9Zn-3Bi/Cu焊点界面金属间化合物生长行为的影响[J]. 材料导报, 2025, 39(6): 23120193-6.
[3] 卞宏友, 柳金生, 刘伟军, 张广泰, 姚佳彬, 邢飞. 激光沉积修复GH738/K417G合金时效热处理组织性能分析[J]. 材料导报, 2025, 39(3): 23110265-6.
[4] 吴霜, 胡平, 刘文君, 高雪琴, 王维青, 宋江凤, 王辉, 蒋斌. Ca、Sr复合添加对AZ91镁合金组织与耐腐蚀性能的影响[J]. 材料导报, 2025, 39(20): 24100108-9.
[5] 韩静怡, 张鹏, 刘刚. 自然时效Al-Cu系合金溶质原子团簇的研究进展[J]. 材料导报, 2025, 39(20): 24110026-10.
[6] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[7] 李秋生, 李安敏, 眭清平. 原位反应法制备ZrB2/Al-12Si复合材料的显微组织及高温蠕变性能[J]. 材料导报, 2025, 39(19): 24070139-9.
[8] 付同宇, 曹燕光, 李昭东, 魏坤霞, 张建卫, 谭峰亮. 基于超声法对不同状态高强度结构钢板残余应力研究[J]. 材料导报, 2025, 39(17): 24060139-7.
[9] 马宁, 朱建锋, 常柯, 秦宇星, 毛勇, 马文宗. 不同温度退火热处理对Al-Mg-Ga-Sn可溶铝合金塑性及组织的影响研究[J]. 材料导报, 2025, 39(17): 24080053-8.
[10] 李波, 许龙, 杨涵, 杜勇. 均匀化处理对时效强化Al-Mg-Zn-Sc-Zr合金微观组织与性能的影响[J]. 材料导报, 2025, 39(16): 24070104-6.
[11] 李灏, 刘宇伦, 刘金龙, 陈良贤, 李成明, 魏俊俊. 真空热处理对金刚石基TaxN薄膜微观结构及电学性能的影响[J]. 材料导报, 2025, 39(15): 24060003-5.
[12] 张鹏德, 李广, 刘玉鹏, 石玗. 热处理对热丝激光增材制造17-4PH不锈钢组织性能的影响[J]. 材料导报, 2025, 39(15): 24080123-7.
[13] 冯殿远, 刘诗超, 王善林, 李欢欢, 洪敏, 涂文斌. 热处理对30CrMnSiNi2A钢电子束焊接头组织和性能的影响[J]. 材料导报, 2025, 39(14): 24040172-7.
[14] 徐升亮, 廖凯, 杨湘杰, 郭洪民. Sc含量及热处理对Al-Si-Cu-Mg合金组织及热学性能的影响[J]. 材料导报, 2025, 39(11): 24060195-8.
[15] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[1] Pei HE, Weizhi YAO, Jianming LYU, Bo GAO, Xianrong LI. Radiation Resistance Design and Nanoscale Second-phase Particles Characterization for ODS Steels: a Review[J]. Materials Reports, 2018, 32(1): 34 -40 .
[2] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
[3] YANG Xiaojie, DONG Binghai, CHEN Fengxiang, WAN Li, ZHAO Li, WANG Shimin. One-dimensional TiO2 Photoanodes for Dye-sensitized Solar Cells: Fabrication and Applications[J]. Materials Reports, 2017, 31(17): 138 -145 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] ZHU Lijuan, WANG Min, GU Zhengwei, HE Lingling. Research on Stretch Bending Forming of Stainless Steel Curved Beam[J]. Materials Reports, 2017, 31(24): 179 -181 .
[6] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] FU Yu, HE Junbao, ZHANG Ping, LENG Yumin, MA Benyuan, LI Jiyan. Single Crystal Growth and Physical Properties of Layered Transitional Metal Bismuthide BaAg2-δBi2[J]. Materials Reports, 2018, 32(12): 2043 -2046 .
[9] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[10] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed