Please wait a minute...
材料导报  2025, Vol. 39 Issue (15): 24080123-7    https://doi.org/10.11896/cldb.24080123
  金属与金属基复合材料 |
热处理对热丝激光增材制造17-4PH不锈钢组织性能的影响
张鹏德, 李广*, 刘玉鹏, 石玗*
兰州理工大学,省部共建有色先进加工与再利用国家重点实验室,兰州 730050
The Influence of Heat Treatment on Microstructure and Properties of 17-4PH Stainless Steel Fabricated of Hot Wire Laser Additive Manufacturing
ZHANG Pengde, LI Guang*, LIU Yupeng, SHI Yu*
State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
下载:  全 文 ( PDF ) ( 64827KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 激光增材制造(LAM)工艺过程中存在的高温度梯度和层间循环加热效应,导致沉积材料晶粒生长与力学性能呈现显著的各向异性特征,因此,通过热处理改善LAM材料的微观组织并调控力学性能至关重要。本工作对热丝激光增材制造17-4PH不锈钢热处理后的组织、物相组成、硬度和拉伸性能进行了分析。结果表明:17-4PH不锈钢原始态组织为粗大柱状板条马氏体及少量的晶间细小胞状奥氏体。H900热处理后,马氏体晶粒得到细化,晶粒生长各向异性减弱,且有细小碳化沉淀物的析出。H1025热处理后,马氏体晶粒发生粗化,并且在晶界和晶粒内分布细小的逆转变奥氏体。热处理后LAM样品的力学性能优于锻造样品,LAM 17-4PH不锈钢在H900状态下,抗拉强度从1 108 MPa提高到1 506 MPa,抗拉强度与屈服强度分别高于锻造材料11%和15%,硬度最高达448HV,取得了较好的强韧配合。马氏体基体中碳化物的沉淀析出与晶粒细化产生的强化作用协同提高材料强度,逆转变奥氏体增加了17-4PH不锈钢的塑韧性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张鹏德
李广
刘玉鹏
石玗
关键词:  17-4PH不锈钢  激光增材制造  热处理  拉伸性能  显微组织    
Abstract: The high temperature gradients and interlayer cyclic heating effects inherent in the laser additive manufacturing (LAM) process result in significant anisotropy in both grain growth and mechanical properties of the deposited material. Consequently, it is imperative to employ heat treatment to refine the microstructure and tailor the mechanical properties of LAM-fabricated components. The microstructure, phase composition, hardness and tensile properties of 17-4PH stainless steel made by hot wire laser additive after heat treatment were analyzed in this work. The results showed that 17-4PH stainless steel original state organization for bulky columnar lath martensite and a small amount of intergranular fine cellular austenitic. After heat treatment with H900, the martensite grains are refined, and the anisotropy of grain growth is weakened, and fine carbonized precipitates are precipitated. After H1025 heat treatment, the martensite grains become coarser, and fine reverse-transformed austenite is distributed along grain boundaries and within grains. After heat treatment, the mechanical properties of LAM sample are better than those of wrought sample. The tensile strength of LAM 17-4PH stainless steel increases from 1 108 MPa to 1 506 MPa under the condition of H900. The tensile strength and yield strength of LAM 17-4PH stainless steel are 11% and 15% higher than those of wrought stainless steel, respectively, and the hardness reaches to 448HV. The precipitation of carbides in martensitic matrix and the strengthening effect of grain refinement improve the strength synergically, and the retrograde austenite increases the plastic toughness of 17-4PH stainless steel.
Key words:  17-4PH stainless steel    laser additive manufacturing    heat treatment    tense property    microstructure
出版日期:  2025-08-10      发布日期:  2025-08-13
ZTFLH:  TG142.1  
基金资助: 甘肃省高校科研创新平台重大培育项目(2024CXPT-06);甘肃省科技重大专项(24ZD13GA018);甘肃省重点研发计划(25YFGA037)
通讯作者:  李广,兰州理工大学副研究员(博士)、硕士研究生导师。主要从事非晶合金中的韧脆转变以及先进焊接技术研究工作。liguang@lut.edu.cn
石玗,兰州理工大学教授(博士)、博士研究生导师。主要从事先进焊接方法、增材制造及再制造方法与理论及焊接过程控制等领域的研究工作。shiyu@lut.edu.cn   
作者简介:  张鹏德,兰州理工大学材料科学与工程学院硕士研究生,在石玗教授的指导下进行研究。目前主要研究领域为金属材料激光增材制造。
引用本文:    
张鹏德, 李广, 刘玉鹏, 石玗. 热处理对热丝激光增材制造17-4PH不锈钢组织性能的影响[J]. 材料导报, 2025, 39(15): 24080123-7.
ZHANG Pengde, LI Guang, LIU Yupeng, SHI Yu. The Influence of Heat Treatment on Microstructure and Properties of 17-4PH Stainless Steel Fabricated of Hot Wire Laser Additive Manufacturing. Materials Reports, 2025, 39(15): 24080123-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24080123  或          https://www.mater-rep.com/CN/Y2025/V39/I15/24080123
1 Zhang Z, Kong F, Kovacevie R. Optics and Lasers in Engineering, 2020, 128, 105998.
2 Chen C, Lian G, Jiang J, et al. Journal of Manufacturing Processes, 2018, 36, 621.
3 Chen X, Yao M, Kong F, et al. Journal of Manufacturing Processes, 2023, 87, 183.
4 Ozsoy A, Aydogan E, Dericioglu A F. Materials Science and Enginee-ring: A, 2022, 836, 142574.
5 Sheng Z, Bonvalet R M, Zhou T, et al. Journal of Materials Science, 2021, 56, 2650.
6 Bartolomeu F, Buciumeanu M, Pinto E, et al. Additive Manufacturing, 2017, 16, 81.
7 Hooper Paul A. Additive Manufacturing, 2018, 22, 548.
8 Sun S, Brandt M, Easton M. Laser Additive Manufacturing, 2017, pp.55.
9 Haghdadi N, Laleh M, Moyle M, et al. Journal of Materials Science, 2021, 56, 64.
10 Gibson I, Rosen D W, Stucker B, et al. Additive manufacturing techno-logies(third edition). Switzerland:Springer, 2021.
11 Sun Y, Hebert R J, Aindow M. Materials & Design, 2018, 156, 429.
12 Nezhadfar P D, Rakish S, Phan N, et al. International Journal of Fatigue, 2019, 124, 188.
13 Facchini L, Vicente J N, Lonardelli I, et al. Advanced Engineering Materials, 2010, 12(3), 184.
14 Kurdjumov G V, Khachaturyan A G. Metallurgical Transactions, 1972, 3, 1069.
15 Eskandari H, Lashgari H R, Ye L, et al. Materials Today Communications, 2022, 30, 103075.
16 Sun Y, Hebert R J, Aindow M. Additive Manufacturing, 2020, 35, 101302.
17 Li K, Zhan J B, Yang T B, et al. Additive Manufacturing, 2022, 52, 102672.
18 Zhou T, Tao Z, Yildiz A B, et al. Additive Manufacturing, 2022, 58, 103047.
19 Li P, Cai Q Z, Wei B K, et al. Journal of Iron and Steel Research, International, 2006, 13(5), 73.
20 Su G X, Shi Y, Li G, et al. Journal of Manufacturing Processes, 2023, 102, 622.
21 Zhao S B, Xu S, Huang Y M, et al. Journal of Materials Processing Technology, 2021, 298, 117273.
22 ASTM International. Standard specification for hot-rolled and cold-finished age-hardening stainless steel bars and shapes:ASTM A564/A564M-13. West Conshohocken, US, 2013.
23 Hanawa T, Asami K, Asaoka K. Journal of Biomedical Materials Research, 1998, 40(4), 530.
24 Lyu Z, Sato Y S, Li S, et al. Additive Manufacturing, 2024, 80, 103954.
25 Palanisamy D, Senthil P, Senthilkumar V. Archives of Civil and Mechanical Engineering, 2016, 16, 53.
26 Bajguirani H H. Materials Science and Engineering:A, 2002, 338, 142.
[1] 曾琦, 倪浩涵, 刘伟, 黎超超, 王江伟. 增材制造GH3536回流燃烧室火焰筒主燃孔的微观组织演变与裂纹扩展行为[J]. 材料导报, 2025, 39(8): 24040055-4.
[2] 脱锦鹏, 陈安琦, 姚富升, 徐俊杰, 李响, 董龙龙, 杨义. 颗粒增强耐热钛基复合材料设计制备研究进展[J]. 材料导报, 2025, 39(8): 24040119-10.
[3] 梅婷, 徐洪扬, 李逊, 龙运伟, 唐华, 李志鹏, 邹爱华. 柱塞泵关键摩擦副中复杂黄铜与硅锰黄铜的微观组织与耐磨特性研究[J]. 材料导报, 2025, 39(7): 24080117-5.
[4] 谭会杰, 王海燕, 华连庚, 高雪云, 吕萌, 于大威, 邢磊. 稀土Ce对Fe-Ni-Al马氏体时效钢等温过程显微组织演变的影响[J]. 材料导报, 2025, 39(7): 24010236-6.
[5] 姚通睿, 王曼, 席晓丽. 含Al耐热合金高温氧化行为研究现状[J]. 材料导报, 2025, 39(6): 24050040-10.
[6] 王森巍, 王丽, 王明庆, 佘加, 易嘉琰, 陈先华, 潘复生. Mg-xSc(x=0.5,1.0,3.0,5.0)生物医用合金组织与性能研究[J]. 材料导报, 2025, 39(5): 24090019-8.
[7] 王伟, 庞少雄, 丁士杰, 杨昊天, 于呈呈. 向心关节轴承包围式单边挤压成形工艺数值模拟与实验验证[J]. 材料导报, 2025, 39(4): 23100250-7.
[8] 卞宏友, 柳金生, 刘伟军, 张广泰, 姚佳彬, 邢飞. 激光沉积修复GH738/K417G合金时效热处理组织性能分析[J]. 材料导报, 2025, 39(3): 23110265-6.
[9] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[10] 李灏, 刘宇伦, 刘金龙, 陈良贤, 李成明, 魏俊俊. 真空热处理对金刚石基TaxN薄膜微观结构及电学性能的影响[J]. 材料导报, 2025, 39(15): 24060003-5.
[11] 冯殿远, 刘诗超, 王善林, 李欢欢, 洪敏, 涂文斌. 热处理对30CrMnSiNi2A钢电子束焊接头组织和性能的影响[J]. 材料导报, 2025, 39(14): 24040172-7.
[12] 赵锡龙, 曹泽宇, 赵铭, 王堃. 铜合金板材低电压螺柱喷涂304奥氏体不锈钢喷涂工艺及涂层性能研究[J]. 材料导报, 2025, 39(14): 24070070-7.
[13] 解光瑞, 杨盼盼, 孙吉, 杨阳, 丁红宇, 刘兴光, 张世宏. 30CrNi2MoVA钢等离子体渗氮层表征及其对宏观力学性能的影响[J]. 材料导报, 2025, 39(13): 24050145-8.
[14] 苏子龙, 尹立孟, 陈玉华, 张鹤鹤, 张龙, 张丽萍. 稀土元素对微电子封装互连材料组织与性能的影响[J]. 材料导报, 2025, 39(12): 24030246-9.
[15] 薛云龙, 田康康, 刘虎林, 伍媛婷, 袁亮, 高中堂. 无钴共晶高熵合金研究进展[J]. 材料导报, 2025, 39(11): 24050218-10.
[1] . Effect of Annealing on Crystalline Structure and Low-temperature Toughness of
Polypropylene Random Copolymer Dedicated Pipe Materials
[J]. Materials Reports, 2017, 31(4): 65 -69 .
[2] YAN Xin, HUI Xiaoyan, YAN Congxiang, AI Tao, SU Xinghua. Preparation and Visible-light Photocatalytic Activity of Graphite-like Carbon Nitride Two-dimensional Nanosheets[J]. Materials Reports, 2017, 31(9): 77 -80 .
[3] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[4] WANG Xinyu, ZHEN Siqi, DONG Zhengchao, ZHONG Chonggui. Electrocaloric Effects of Ferroelectric Materials: an Overview[J]. Materials Reports, 2017, 31(19): 13 -18 .
[5] WANG Bin, ZHANG Lele, DU Jinjing, ZHANG Bo, LIANG Lisi, ZHU Jun. Applying Electrothermal Reduction Method to the Preparation of V-Ti-Cr-Fe Alloys Serving as Hydrogen Storage Materials[J]. Materials Reports, 2018, 32(10): 1635 -1638 .
[6] GAO Wei, ZHAO Guangjie. Synergetic Oxidation Modification of Wooden Activated Carbon Fiber with Nitric Acid and Ceric Ammonium Nitrate[J]. Materials Reports, 2018, 32(9): 1507 -1512 .
[7] ZHANG Tiangang,SUN Ronglu,AN Tongda,ZHANG Hongwei. Comparative Study on Microstructure of Single-pass and Multitrack TC4 Laser Cladding Layer on Ti811 Surface[J]. Materials Reports, 2018, 32(12): 1983 -1987 .
[8] WANG Bilei, LI Yongcan, SONG Changjiang. A State-of-the-art Review on Yield Point Elongation Phenomenon of Low Carbon Steel[J]. Materials Reports, 2018, 32(15): 2659 -2665 .
[9] ZHU Yaming, ZHAO Chunlei, LIU Xian, ZHAO Xuefei, GAO Lijuan, CHENG Junxia. Study on the Basic Physical Properties of Toluene Soluble Extracted from Coal Tar Pitch[J]. Materials Reports, 2019, 33(2): 368 -372 .
[10] ZHOU Chao, LI Detian, ZHOU Hui, ZHANG Kaifeng, CAO Shengzhu. Non-evaporable Getter Films for Vacuum Packaging of MEMSDevices: an Overview[J]. Materials Reports, 2019, 33(3): 438 -443 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed