Please wait a minute...
材料导报  2025, Vol. 39 Issue (11): 24050218-10    https://doi.org/10.11896/cldb.24050218
  金属与金属基复合材料 |
无钴共晶高熵合金研究进展
薛云龙1,*, 田康康1, 刘虎林1, 伍媛婷1, 袁亮2, 高中堂3
1 陕西科技大学陕西省无机材料绿色制备与功能化重点实验室,西安 710021
2 陕西科技大学轻工科学与工程学院,西安 710021
3 西安科技大学机械工程学院,西安 710054
Research Progress of Co-free Eutectic High Entropy Alloys
XUE Yunlong1,*, TIAN Kangkang1, LIU Hulin1, WU Yuanting1, YUAN Liang2, GAO Zhongtang3
1 Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi’an 710021, China
2 College of Light Industry Science and Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
3 College of Mechanical Engineering, Xi’an University of Science and Technology, Xi’an 710054, China
下载:  全 文 ( PDF ) ( 21586KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 共晶高熵合金因具有良好的综合力学性能及铸造工艺性而受到国际社会的广泛关注,但现有共晶高熵合金通常含有稀贵金属Co,导致合金的成本居高不下,且由于Co为全球战略稀缺资源,不利于国家的战略安全及稳定发展,因此研发无Co共晶高熵合金具有重要的理论意义及应用价值。本文基于无Co共晶高熵合金的研究现状,介绍了该类合金的成分设计方法,重点阐述了FCC+增强相合金体系、BCC+增强相合金体系及其他合金体系,深入分析了不同合金体系的设计思路、显微组织及力学性能,探讨了该类材料的存在问题及发展趋势,以期为无Co共晶高熵合金的发展及应用提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
薛云龙
田康康
刘虎林
伍媛婷
袁亮
高中堂
关键词:  共晶高熵合金  成分设计  合金体系  显微组织  力学性能    
Abstract: Eutectic high entropy alloys have received wide attention because of their good comprehensive mechanical properties and casting processability, but the existing eutectic high entropy alloys usually contain the rare precious metal Co, which leads to high cost of the alloys and is not conducive to the strategic security and stable development of the country due to Co being a globally strategically scarce resource. Therefore, it is of great theoretical significance and application value to develop Co-free eutectic high entropy alloys. Based on the current research status of Co-free eutectic high entropy alloys, this paper introduces the composition design method of such alloys, focuses on FCC+enhanced-phase alloy system, BCC+enhanced-phase alloy system and other alloy systems, and analyzes in depth the design ideas, microstructure and mechanical pro-perties of the different alloy systems, and explores the problems and development trend of such materials, and finally proposes references for the development and application of Co-free eutectic high entropy alloys. This paper may provide reference for the development and application of Co-free eutectic high entropy alloys.
Key words:  eutectic high entropy alloy    composition design    alloy system    microstructure    mechanical property
发布日期:  2025-05-29
ZTFLH:  TG111.4  
基金资助: 陕西省教育厅科研计划项目资助(23JC017);西安市科学技术局高校院所人才服务企业项目(23GXFW0007);陕西高校青年创新团队(2022-70)
通讯作者:  *薛云龙,工学博士,陕西科技大学副教授、硕士研究生导师。主要研究方向:高温耐磨合金技术与应用;金属结构材料设计及制备;材料力学性能及强韧化机理。xueyunlong@sust.edu.cn   
引用本文:    
薛云龙, 田康康, 刘虎林, 伍媛婷, 袁亮, 高中堂. 无钴共晶高熵合金研究进展[J]. 材料导报, 2025, 39(11): 24050218-10.
XUE Yunlong, TIAN Kangkang, LIU Hulin, WU Yuanting, YUAN Liang, GAO Zhongtang. Research Progress of Co-free Eutectic High Entropy Alloys. Materials Reports, 2025, 39(11): 24050218-10.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24050218  或          https://www.mater-rep.com/CN/Y2025/V39/I11/24050218
1 Yeh J W, Chen S K, Lin S J, et al. Advanced Engineering Materials, 2004, 6(5), 299.
2 Lu Y, Dong Y, Guo S, et al. Scientific Reports, 2014, 4(1), 6200.
3 Xu T T, Lu Y P, Cao Z Q, et al. Journal of Materials Engineering and Performance, 2019, 28(12), 7642.
4 Qiu Y X, Zhang A J, Xin B B, et al. Tribology, 2023, 43(12), 1381 (in Chinese).
邱玉新, 张爱军, 辛本斌, 等. 摩擦学学报, 2023, 43(12), 1381.
5 Zuo G. Natural Resource Economics of China, 2023, 36(9), 4 (in Chinese).
左更. 中国国土资源经济, 2023, 36(9), 4.
6 Li Y W, Chang K K, Wang P S, et al. Materials Science and Engineering of Powder Metallurgy, 2012, 17(1), 1 (in Chinese).
李一为, 常可可, 王培生, 等. 粉末冶金材料科学与工程, 2012, 17(1), 1.
7 Wu M X, Wang S B, Huang H J, et al. Materials Letters, 2020, 262, 127175.
8 Talluri G, Murty B S, Maurya R S. Scripta Materialia, 2024, 249, 116178.
9 Lu Y P, Jiang H, Guo S, et al. Intermetallics, 2017, 91, 124.
10 Ye X C, Xiong J Y, Wu X, et al. Scripta Materialia, 2021, 199, 113886.
11 Ye X C, Lei H F, Liu X W, et al. Materials Letters, 2023, 343, 134395.
12 Jiang H, Han K M, Gao X X, et al. Materials & Design, 2018, 142, 101.
13 Jiao W N, Miao J, Lu Y, et al. Journal of Alloys and Compounds, 2023, 941, 168975.
14 Chanda B, Das J. Journal of Alloys and Compounds, 2019, 798, 167.
15 Huang W, Martin P, Zhuang H L. Acta Materialia, 2019, 169, 225.
16 Xue J T, Huang J T, Liu G T, et al. Vacuum, 2024, 225, 113290.
17 Jin X, Bi J, Zhang L, et al. Journal of Alloys and Compounds, 2019, 770, 655.
18 Liang D S, Wei C X, Ren F Z. Materials Science and Engineering:A, 2021, 806, 140611.
19 Lu Y, Zhang M D, Zhang L J, et al. Materials Science and Engineering:A, 2021, 801, 140421.
20 Lu Y. Study on microstructure and mechanical properties of Co-free CrFeNiNbx multi-principal alloy. Master’s Thesis, Yanshan University China, 2021 (in Chinese).
卢烨. CrFeNiNbx无Co多主元合金组织结构与力学性能研究. 硕士学位论文, 燕山大学, 2021.
21 Song J F, Chai Z S, Zheng J, et al. Acta Metallurgica Sinica (English Letters), 2021, 34(8), 1103.
22 Lee W H, Oh Y J, Jo M G, et al. Journal of Alloys and Compounds, 2021, 860, 158502.
23 Ye F Y, Yang J, Sun P J, et al. Chinese Journal of Lasers, 2023, 50(20), 112 (in Chinese).
叶馥宇, 杨键, 孙潘杰, 等. 中国激光, 2023, 50(20), 112.
24 Yu L E, Ye X C, Fang D, et al. Journal of Materials Research and Technology, 2022, 21, 3207.
25 Li Z, Liu C, Wang L, et al. Materials Characterization, 2023, 203, 113120.
26 Liang X Y, Chen J, Yao Y H, et al. Materials Letters, 2023, 337, 133952.
27 Ye X C, Wu X, Wang T, et al. Transactions of Materials and Heat Treatment, 2022, 43(9), 68 (in Chinese).
叶喜葱, 吴鑫, 王童, 等. 材料热处理学报, 2022, 43(9), 68.
28 Jiang Z F, Chen W P, Xia Z B, et al. Intermetallics, 2019, 108, 45.
29 Wang M Z, Wen Z Q, Liu J X, et al. Journal of Alloys and Compounds, 2022, 918, 165441.
30 Jiao W N, Li T X, Chang X X, et al. Journal of Alloys and Compounds, 2022, 902, 163814.
31 Yao C L. Composition design and microstructure research of NiAl based eutectic high-entropy alloys. Master’s Thesis, Xi’an University of Technology, China, 2021 (in Chinese).
姚成利. NiAl基共晶高熵合金的成分设计与微观组织研究. 硕士学位论文, 西安理工大学, 2021.
32 Wang L, Su Y N, Yao C L, et al. Intermetallics, 2022, 143, 107476.
33 Xue Y L, Wang Y X, Sun H H, et al. Metals and Materials International, 2023, 29(2), 564.
34 Wei Q Q, Xu X D, Shen Q, et al. Science, 2022, 8(27), 2068.
35 Wu M X, Wang S B, Xiao F, et al. Materials Science and Engineering:A, 2022, 842, 143112.
36 Wang M L, Lu Y P, Lan J G, et al. Acta Materialia, 2023, 248, 118806.
37 Hu M C, Du Y, Pei X H, et al. Tribology, 2024, 44 (5), 609 (in Chinese).
胡明川, 杜银, 裴旭辉, 等. 摩擦学学报, 2024, 44 (5), 609.
38 Chen B, Li X, Chen W, et al. Intermetallics, 2023, 155, 107829.
39 Xue Y L, Wang Y X, Sun H H, et al. The Chinese Journal of Nonferrous Metals, 2022, 32(10), 2999 (in Chinese).
薛云龙, 王玉轩, 孙浩华, 等. 中国有色金属学报, 2022, 32(10), 2999.
40 Yuan J P, Yang Y J, Duan S G, et al. Materials, 2023, 16(1), 56.
41 Li S Y. Microstructure evolution and properties of Al-Cr-Fe-Ni-M eutectic high-entropy alloys. Master’s Thesis, Shandong University of Technology, China, 2022 (in Chinese).
李肖逸. Al-Cr-Fe-Ni-M系共晶高熵合金组织演化及性能研究. 硕士学位论文, 山东理工大学, 2022.
42 Guo Y X, Shang X J, Liu Q B. Chinese Journal of Rare Metals, 2018, 42(8), 807 (in Chinese).
郭亚雄, 尚晓娟, 刘其斌. 稀有金属, 2018, 42(8), 807.
43 Yang B T, Ma L L, Zhao P P. Materials Science and Engineering:A, 2023, 863, 144524.
44 Jiao W N. Composition design and mechanical properties of CrFeNiMo(V) eutectic high entropy alloy. Master’s Thesis, Dalian University of Technology, China, 2019 (in Chinese).
焦文娜. CrFeNiMo(V)系共晶高熵合金的成分设计与力学性能研究. 硕士学位论文, 大连理工大学, 2019.
45 Liang W Z, Wu W D, Chen Y S, et al. Journal of Heilongjiang University of Science and Technology, 2021, 31(3), 373(in Chinese).
梁维中, 吴万东, 陈永生, 等. 黑龙江科技大学学报, 2021, 31(3), 373.
46 Ye X C, Cheng Z H, Liu C, et al. Materials Science and Engineering:A, 2022, 841, 143026.
47 Fang D, Wu X, Xu W Q, et al. Materials Science and Engineering:A, 2023, 870, 144919.
48 Wu W D. Study on microstructure and mechanical properties of CrFenNiMoNb-Y/Er eutectic high entropy alloys. Master’s Thesis, Heilongjiang University of Science and Technology, China, 2022 (in Chinese).
吴万东. CrFeNiMoNb-Y/Er共晶高熵合金微观组织与力学性能研究. 硕士学位论文, 黑龙江科技大学, 2022.
49 Luo S C. Composition design and fundamental research on selective laser melting of AlCrCuFeNix high entropy alloys. Ph. D. Thesis, Huazhong University of Science and Technology, China, 2021 (in Chinese).
骆顺存. AlCrCuFeNix高熵合金的成分设计及激光选区熔化成形基础研究. 博士学位论文, 华中科技大学, 2021.
50 Tri D V, Tieu A K, Wexler D, et al. Journal of Alloys and Compounds, 2022, 928, 167087.
51 Wang Y B, Li S Y, Chen F D, et al. Journal of Alloys and Compounds, 2023, 958, 170373.
52 Miao J W, Wang M L, Zhang A J, et al. Acta Metallurgica Sinica, 2023, 59(2), 267 (in Chinese).
苗军伟, 王明亮, 张爱军, 等. 金属学报, 2023, 59(2), 267.
53 Cheng X. Study on microstructures and properties of AlxCrFeNi quaternary component alloys. Master’s Thesis, China University of Mining and Technology, China, 2017 (in Chinese).
陈霄. AlxCrFeNi四组元合金的微观组织与性能研究. 硕士学位论文, 中国矿业大学, 2017.
54 Xiao Y K, Chang X D, Peng X H. Journal of Materials Research and Technology, 2022, 21, 4908.
55 Zhang X B. Study on BCC/B2 phase coherent precipitation of AlxCrFey Ni high entropy alloy. Master’s Thesis, North University of China, China, 2023 (in Chinese).
张小波. AlxCrFeyNi系高熵合金BCC/B2相共格析出研究. 硕士学位论文, 中北大学, 2023.
56 Fang D, Zhang A, Luo A J, et al. Special Casting & Nonferrous Alloys, 2024, 44(1), 30 (in Chinese).
方东, 张安, 罗爱娇, 等. 特种铸造及有色合金, 2024, 44(1), 30.
57 Xu Z, Li Q Y, Li W, et al. Wear, 2023, 522, 204701.
58 Wang H M, Du Y, Pei X H, et al. Acta Metallurgica Sinica, 2024, 60 (7), 937 (in Chinese).
王瀚铭, 杜银, 裴旭辉, 等. 金属学报, 2024, 60 (7), 937.
59 Zhu M, Yao L J, Liu Y Q, et al. Materials Letters, 2020, 272, 127869.
60 Xu Q, Wang Q, Li J, et al. Special Casting & Nonferrous Alloys, 2022, 42(3), 292 (in Chinese).
徐琴, 王琪, 李娟, 等. 特种铸造及有色合金, 2022, 42(3), 292.
61 Li H. Microstructure and mechanical properties of directionally solidified Ti30Ni30Fe10Hf10Nbx high-entropy alloy. Master’s Thesis, University of Science and Technology of China, China, 2021 (in Chinese).
李欢. 定向凝固Ti30Ni30Fe10Hf10Nbx高熵合金的微观结构及力学性能研究. 硕士学位论文, 2022.
62 Bai K W, Wu Z K, Lin M, et al. Acta Materialia, 2023, 243, 118512.
63 Ou W, Yuan X, Li Z, et al. Surfaces and Interfaces, 2023, 40, 103068.
64 Xu Q, Chen D Z, Wang C R, et al. Transactions of Nonferrous Metals Society of China, 2021, 31(2), 512.
65 Xu Z M. Study on the microstructure and properties of WVTaCrxTiy refractory high entropy alloy coating prepared laser cladding. Master’s Thesis, Qilu University of Technology, China, 2023 (in Chinese).
许兆敏. 激光熔覆WVTaCrxTiy难熔高熵合金涂层组织与性能研究. 硕士学位论文, 齐鲁工业大学, 2023.
66 Kuang S H. Laser cladding of BCC-based eutectic high-entropy alloy coa-tings. Master’s Thesis, Guizhou University, China, 2021 (in Chinese).
匡世华. 激光熔覆BCC基共晶高熵合金涂层研究. 硕士学位论文, 贵州大学, 2021.
67 Lee C P, Chang C C, Chen Y Y, et al. Corrosion Science, 2008, 50(7), 2053.
68 Zhu J M, Fu H M, Zhang H F, et al. Materials Science & Engineering:A, 2010, 527, 7210.
[1] 董洪年, 杨明, 林天一, 陈沛然, 魏婷婷. 针刺密度对碳/碳复合材料力学行为影响的仿真分析[J]. 材料导报, 2025, 39(9): 23120170-6.
[2] 夏益健, 张宇, 张云升, 朱微微, 朱文轩. 磨细凝灰岩制备机制砂混凝土力学性能研究[J]. 材料导报, 2025, 39(9): 24030199-7.
[3] 钱如胜, 叶志波, 张云升, 赵儒泽, 孔德玉, 杨杨, 聂海波. 固碳强化再生粗骨料对其混凝土力学强度及体积稳定性的影响[J]. 材料导报, 2025, 39(9): 24020155-6.
[4] 燕伟, 李驰, 邢渊浩, 高瑜. 循环流化床多元固废粉煤灰基水泥胶砂固碳试验研究[J]. 材料导报, 2025, 39(9): 24010111-7.
[5] 陈港明, 王辉, 黄雪飞. 温轧对低铬FeCrAl合金显微组织及室温和高温力学性能的影响[J]. 材料导报, 2025, 39(9): 24060057-11.
[6] 陈继伟, 朱慧雯, 王海镔, 桑建权, 李艳花, 熊芬, 罗建新. 利用Hofmeister效应一步法制备离子导电耐低温强韧PVA水凝胶[J]. 材料导报, 2025, 39(9): 24050045-7.
[7] 陈永达, 胡智淇, 关岩, 常钧, 陈兵. 羟丙基甲基纤维素与硅烷偶联剂对磷酸镁基钢结构防火涂料性能的影响[J]. 材料导报, 2025, 39(8): 24010194-7.
[8] 雒亿平, 邢美光, 王德法, 易万成, 杨连碧, 薛国斌. 赤铁矿对偏高岭土基地聚物力学性能及反应机理的影响[J]. 材料导报, 2025, 39(8): 24040075-8.
[9] 李琼, 安宝峰, 苏睿, 乔宏霞, 王超群. 废玻璃粉透水混凝土物理性能及复合胶凝体系微观机理研究[J]. 材料导报, 2025, 39(8): 23100186-11.
[10] 程焱, 张弦, 苏志诚, 刘静, 吴开明. 具有TRIP效应的先进高强度钢力学性能及腐蚀行为的研究进展[J]. 材料导报, 2025, 39(8): 24020115-8.
[11] 脱锦鹏, 陈安琦, 姚富升, 徐俊杰, 李响, 董龙龙, 杨义. 颗粒增强耐热钛基复合材料设计制备研究进展[J]. 材料导报, 2025, 39(8): 24040119-10.
[12] 徐焜, 黄子悦, 程云浦, 钱小妹. GNPs改性环氧复合材料等效弹性性能数值预测模型[J]. 材料导报, 2025, 39(8): 24040190-4.
[13] 董硕, 郑立森, 史奉伟, 王来, 刘哲. 钢纤维地聚物再生混凝土力学性能及强度指标换算[J]. 材料导报, 2025, 39(7): 24100219-8.
[14] 梅婷, 徐洪扬, 李逊, 龙运伟, 唐华, 李志鹏, 邹爱华. 柱塞泵关键摩擦副中复杂黄铜与硅锰黄铜的微观组织与耐磨特性研究[J]. 材料导报, 2025, 39(7): 24080117-5.
[15] 谭会杰, 王海燕, 华连庚, 高雪云, 吕萌, 于大威, 邢磊. 稀土Ce对Fe-Ni-Al马氏体时效钢等温过程显微组织演变的影响[J]. 材料导报, 2025, 39(7): 24010236-6.
[1] LIU Diqiang, JIA Jiangang, GAO Changqi, WANG Jianhong. Preparation of Raney-Ni/Al2O3 Powder Composites by De-alloying of Mechanochemical Synthesized Ni2Al3/Al2O3 Powders[J]. Materials Reports, 2018, 32(6): 957 -960 .
[2] . Effect of Annealing on Crystalline Structure and Low-temperature Toughness of
Polypropylene Random Copolymer Dedicated Pipe Materials
[J]. Materials Reports, 2017, 31(4): 65 -69 .
[3] YAN Xin, HUI Xiaoyan, YAN Congxiang, AI Tao, SU Xinghua. Preparation and Visible-light Photocatalytic Activity of Graphite-like Carbon Nitride Two-dimensional Nanosheets[J]. Materials Reports, 2017, 31(9): 77 -80 .
[4] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[5] HUANG Jianfeng, WANG Caiwei, LI Jiayin, CAO Liyun, ZHU Dongyue, XI Ting. Advances in Carbon-based Anode Materials for Sodium Ion Batteries[J]. Materials Reports, 2017, 31(21): 19 -23 .
[6] WANG Bin, ZHANG Lele, DU Jinjing, ZHANG Bo, LIANG Lisi, ZHU Jun. Applying Electrothermal Reduction Method to the Preparation of V-Ti-Cr-Fe Alloys Serving as Hydrogen Storage Materials[J]. Materials Reports, 2018, 32(10): 1635 -1638 .
[7] GAO Wei, ZHAO Guangjie. Synergetic Oxidation Modification of Wooden Activated Carbon Fiber with Nitric Acid and Ceric Ammonium Nitrate[J]. Materials Reports, 2018, 32(9): 1507 -1512 .
[8] ZHANG Tiangang,SUN Ronglu,AN Tongda,ZHANG Hongwei. Comparative Study on Microstructure of Single-pass and Multitrack TC4 Laser Cladding Layer on Ti811 Surface[J]. Materials Reports, 2018, 32(12): 1983 -1987 .
[9] HAN Zhiyong, QIU Zhenzhen, SHI Wenxin. Effect of Surface Modification of Bonding Layers by High Current Pulsed Electron Beam on Thermal Shock Failure and Residual Stress of Thermal Barrier Coatings[J]. Materials Reports, 2018, 32(24): 4303 -4308 .
[10] YUAN Teng, LIANG Bin, HUANG Jiajian, YANG Zhuohong, SHAO Qinghui. Effect of Shell Thickness on Morphology and Opacity Ability of Hollow Styrene
Acrylic Latex Particles
[J]. Materials Reports, 2019, 33(4): 724 -728 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed