Please wait a minute...
材料导报  2025, Vol. 39 Issue (15): 24080168-9    https://doi.org/10.11896/cldb.24080168
  无机非金属及其复合材料 |
基于机器学习的光谱选择性红外辐射材料设计研究进展
葛宇飞, 刘东青*, 程海峰, 桂博恒, 王新飞, 贾岩
国防科技大学空天科学学院,新型陶瓷纤维及其复合材料重点实验室,长沙 410073
Research Progress in Machine Learning-based Design of Spectrally Selective Infrared Radiating Materials
GE Yufei, LIU Dongqing*, CHENG Haifeng, GUI Boheng, WANG Xinfei, JIA Yan
Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace and Engineering, National University of Defense Techno-logy, Changsha 410073, China
下载:  全 文 ( PDF ) ( 22843KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着热光伏、辐射制冷、气体检测、红外隐身等领域的快速发展,对光谱选择性红外辐射材料的需求日益迫切。单种材料通常难以实现对红外光谱的精细选择性调控,需要结合多种材料进行结构优化设计,以满足不同应用场景对光谱选择性红外辐射材料的需求。但光谱选择性红外辐射材料设计参数空间大,传统的“试错型”设计难以实现全局优化和处理多目标约束问题,且耗时较长。随着人工智能和大数据技术的发展,通过构建机器学习模型,对材料成分、排布方式、膜层厚度等参数进行并行设计,能够实现光谱选择性红外辐射材料设计的快速全局优化。本文旨在梳理机器学习应用于光谱选择性红外辐射多层膜和超表面设计的最新研究进展,分析机器学习辅助光谱选择性红外辐射材料设计的优势与问题,并指出未来发展趋势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
葛宇飞
刘东青
程海峰
桂博恒
王新飞
贾岩
关键词:  机器学习  光谱选择性  红外辐射  多层膜  超表面  发射率    
Abstract: The rapid development of thermophotovoltaics, radiative cooling, gas sensing and infrared stealth has proposed significant demands on spectrally selective infrared radiating materials. It is usually difficult for a single kind of material to realize complicated spectral selectivity. Consequently, selecting various materials and designing the structure are necessary to meet the requirements of different application scenarios. Howe-ver, the design parameter space of spectrally selective infrared radiating materials is large, and the conventional "trial-and-error" design is difficult to realize global optimization and deal with the multi-objective constraint problems. Due to the development of artificial intelligence and big data technology, rapid global optimization of spectrally selective infrared radiation material can be achieved by constructing a machine learning model for the design of parameters such as material composition, arrangement mode and film layer thickness. This paper mainly outlines the latest research progress of machine learning-based design of multilayer film and metasurface, analyzes the advantages and problems of machine learning-assisted design of spectrally selective infrared radiation materials, and puts forward the future development trend.
Key words:  machine learning    spectrally selective    infrared radiation    multilayer film    metasurface    emissivity
出版日期:  2025-08-10      发布日期:  2025-08-13
ZTFLH:  TB34  
基金资助: 国家自然科学基金(52073303)
通讯作者:  刘东青,博士,国防科技大学空天科学学院副教授、博士研究生导师,主要从事红外辐射调控材料与器件研究。liudongqing07@nudt.edu.cn   
作者简介:  葛宇飞,国防科技大学空天科学学院硕士研究生,在刘东青副教授的指导下进行研究。目前主要研究领域为红外辐射调控材料。
引用本文:    
葛宇飞, 刘东青, 程海峰, 桂博恒, 王新飞, 贾岩. 基于机器学习的光谱选择性红外辐射材料设计研究进展[J]. 材料导报, 2025, 39(15): 24080168-9.
GE Yufei, LIU Dongqing, CHENG Haifeng, GUI Boheng, WANG Xinfei, JIA Yan. Research Progress in Machine Learning-based Design of Spectrally Selective Infrared Radiating Materials. Materials Reports, 2025, 39(15): 24080168-9.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24080168  或          https://www.mater-rep.com/CN/Y2025/V39/I15/24080168
1 Zhao Y T, Yang F, Song J L, et al. Journal of Applied Physics, 2023, 133(12), 124904.
2 Hu R, Song J, Liu Y, et al. Nano Energy, 2020, 72, 104687.
3 Noureen S, Ijaz S, Javed I, et al. Optical Materials Express, 2024, 14(4), 1025.
4 Sheng C, An Y, Du J, et al. ACS Photonics, 2019, 6(10), 2545.
5 Yao K, Ma H, Huang M, et al. ACS Applied Nano Materials, 2019, 2(9), 5512.
6 Yang Z, Ishii S, Yokoyama T, et al. ACS Photonics, 2017, 4(9), 2212.
7 Xu H, Wu P, Zhu C, et al. Journal of Materials Chemistry C, 2013, 1(38), 6087.
8 Xi W, Liu Y D, Song J L, et al. Optics Letters, 2021, 46(4), 888.
9 Deng Z, Su Y, Qin W, et al. ACS Applied Nano Materials, 2022, 5(4), 5119.
10 Kim J, Park C, Hahn J W. Advanced Optical Materials, 2022, 10(6), 1.
11 Pan M, Huang Y, Li Q, et al. Nano Energy, 2020, 69, 104449.
12 Fan S, Li W. Nature Photonics, 2022, 16(3), 182.
13 Hu R, Xi W, Liu Y, et al. Materials Today, 2021, 45, 120.
14 Chen F Q, Liu Y, Liu X J, et al. Applied Physics Letters, 2023, 122(19), 191702.
15 Pang Y, Li Y, Yan M, et al. Optics Express, 2018, 26(9), 11950.
16 Hu J, Bandyopadhyay S, Liu Y H, et al. Frontiers in Physics, 2021, 8, 2296.
17 Walia S, Shah C M, Gutruf P, et al. Applied Physics Reviews, 2015, 2(1), 1.
18 Abdollahramezani S, Hemmatyar O, Taghinejad M, et al. Nature Communications, 2022, 13(1), 1.
19 Keawmuang H, Badloe T, Lee C, et al. Solar Energy Materials and Solar Cells, 2024, 271, 112848.
20 Xi W, Lee Y J, Yu S, et al. Nature Communications, 2023, 14(1), 4694.
21 Chen D, Colas J, Mercier F, et al. Surface and Coatings Technology, 2019, 377, 124872.
22 Kudyshev Z A, Kildishev A V, Shalaev V M, et al. Applied Physics Reviews, 2020, 7(2), 1.
23 Molesky S, Lin Z, Piggott A Y, et al. Nature Photonics, 2018, 12(11), 659.
24 Chen Z, Yu S, Yuan C, et al. Journal of Applied Physics, 2023, 134(20), 203101.
25 Naseri P, Hum S V. IEEE Transactions on Antennas and Propagation, 2021, 69(9), 5725.
26 Wen S Z, Dang C Z, Liu X L. Applied Physics Letters, 2022, 121(7), 071101.
27 Jain P, Chhabra H, Chauhan U, et al. Materials Chemistry and Physics, 2023, 307, 128180.
28 Liao T, Zhao C Y, Wang H, et al. International Journal of Heat and Mass Transfer, 2024, 219, 124831.
29 Ma W, Chen W, Li D, et al. Nanophotonics, 2023, 12(18), 3589.
30 Vasudevan R, Pilania G, Balachandran P V. Journal of Applied Physics, 2021, 129(7), 070401.
31 Riganti R, Negro L D. Applied Physics Letters, 2023, 123(17), 171104.
32 Yu S, Zhou P, Xi W, et al. Light:Science & Applications, 2023, 12(1), 2755.
33 Qiu Q, Zhou D, Zhang J, et al. Optics Letters, 2023, 48(22), 6000.
34 Chen J, Li X, Chen Y, et al. Photonics, 2023, 10(5), 546.
35 Nong J, Li N, Jiang X, et al. Optics Express, 2024, 32(3), 3379.
36 Nong J, Jiang X, Wei X, et al. Optics Express, 2023, 31(20), 33622.
37 Zhang H, Huang Z, Ding M, et al. Science Advances, 2023, 9(15), Eadf3737.
38 Deb K, Pratap A, Agarwal S, et al. IEEE Transactions on Evolutionary Computation, 2002, 6(2), 182.
39 Wang Q, Huang Z, Li J, et al. Nano Letters, 2023, 23(4), 1144.
40 Guan Q, Raza A, Mao S S, et al. ACS Photonics, 2023, 10(3), 715.
41 Zhan T, Liu Q S, Sun Y J, et al. Optics Communications, 2022, 510, 127920.
42 Chen Y, Zhao T, Chang Y, et al. Next Energy, 2024, 3, 100046.
43 Zhang Y, Chen Y, Wang T, et al. Opto-Electronic Advances, 2024, 7(4), 230194.
44 Muhammad, Kennedy J, Lim C W. Materials Today Communications, 2022, 33, 104606.
45 Chen W, Gao Y, Li Y, et al. Advanced Science, 2023, 10(13), e2206718.
46 Pan Q, Zhou S, Chen S, et al. Optics Express, 2023, 31(15), 23944.
47 Zhang W, Wang B, Zhao C. ACS Applied Energy Materials, 2021, 4(2), 2004.
48 Kim S, Jung S, Bobbitt A, et al. Cell Reports Physical Science, 2024, 5(3), 101847.
49 Sakurai A, Yada K, Simomura T, et al. ACS Central Science, 2019, 5(2), 319.
50 Yu S, Zhou P, Wang X, et al. Light:Science & Applications, 2023, 12(1), 291.
51 Zhu Y, Zhang L, Wang J, et al. Journal of Alloys and Compounds, 2022, 920, 165977.
52 Zhu H Z, Li Q, Tao C N, et al. Nature Communications, 2021, 12(1), 1805.
53 Shim H B, Han K, Song J, et al. Advanced Optical Materials, 2022, 10(6), 1.
54 Wang K X, Wang B K. Materials Science Forum, 2018, 937(1), 97.
55 Negm A, Bakr M H, Howlader M M R, et al. Nanomaterials, 2023, 13(23), 3073.
56 Sun K, Vassos E, Yan X, et al. Advanced Optical Materials, 2022, 10(17), 1.
57 Zhu C L, Bamidele Ea, Shen X Y, et al. Chemical Reviews, 2024, 124(7), 4258.
58 Liu C X, Yu G L. Journal of Computational Design and Engineering, 2023, 10(2), 602.
59 Molesky S, Lin Z, Piggott A Y, et al. Nature Photonics, 2018, 12(11), 659.
60 Sell D, Yang J, Doshay S, et al. Nano Letters, 2017, 17(6), 3752.
61 Frellsen L F, Ding Y, Sigmund O, et al. Optics Express, 2016, 24(15), 16866.
62 Jafar-Zanjani S, Inampudi S, Mosallaei H. Scientific Reports, 2018, 8(1), 1.
63 Li S Y, An M, Zheng Z H, et al. Applied Optics, 2023, 62(16), 4359.
64 He M, Nolen J R, Nordlander J, et al. Nature Materials, 2021, 20(12), 1663.
65 Su W, Ding Z P, Luo Y L, et al. Solar Energy Materials And Solar Cells, 2023, 260, 112488.
66 Kudyshev Z A, Kildishev A V, Shalaev V M, et al. Nanophotonics, 2020, 10(1), 371.
67 Zhu R C, Wang J, Jiang J M, et al. Photonics Research, 2022, 10(5), 1146.
68 Gu L L, Liu H Z, Wei Z C, et al. Photonics, 2023, 10(8), 874.
69 Liu X H, Wang P, Xiao C Y, et al. Advanced Functional Materials, 2023, 33(11), 2212068.
70 Wang J N, Zhan Y H, Ma W, et al. iScience, 2023, 26(6), 106857.
71 Park M, Grbčić L, Motameni P, et al. Advanced Science, 2024, 11(26), e2401951.
72 Ma W, Liu Z, Kudyshev Z A, et al. Nature Photonics, 2020, 15(2), 77.
73 Wang L, Dong J, Zhang W J, et al. Nanomaterials, 2023, 13(6), 1030.
74 García-Esteban J J, Bravo-Abad J, Cuevas J C. Physical Review Applied, 2021, 16(6), 064006.
75 Sullivan J, Mirhashemi A, Lee J. Scientific Reports, 2022, 12(1), 1.
76 Sullivan J, Mirhashemi A, Lee J. Scientific Reports, 2023, 13(1), 7382.
77 Zheng Y J, Dai H J, Wu J Y, et al. Frontiers in Physics, 2022, 10, 1069722.
78 Kim E, Huang K, Saunders A, et al. Chemistry of Materials, 2017, 29(21), 9436.
79 Kononova O, Huo H, He T, et al. Scientific Data, 2019, 6(1), 203.
80 Huang S, Cole J M. Scientific Data, 2020, 7(1), 260.
81 Dong Q, Cole J M. Scientific Data, 2022, 9(1), 193.
82 Zhao J, Cole J M. Scientific Data, 2022, 9(1), 192.
83 Baibakova V, Elzouka M, Lubner S, et al. Scientific Data, 2022, 9(1), 589.
[1] 鲍艳, 谢梦爽, 郭茹月, 张婧. VO2智能调温涂层的研究进展[J]. 材料导报, 2025, 39(7): 24030036-7.
[2] 李自强, 崔素萍, 马忠诚, 王亚丽, 王晶, 刘云, 乔志杨. 机器学习算法用于水泥强度预测的研究进展[J]. 材料导报, 2025, 39(5): 23120133-12.
[3] 刘朝晖, 盛佳豪, 柳力. 数据驱动下的沥青混合料材料组成设计方法[J]. 材料导报, 2025, 39(4): 24010230-9.
[4] 田根, 朱甫宏, 王文宇, 王晓明, 赵阳, 韩国峰, 任智强, 朱胜. 基于机器学习的传感器监测在金属激光增材制造中的应用[J]. 材料导报, 2025, 39(2): 23080174-16.
[5] 豆裕, 范同祥. 高温太阳光谱选择性吸收涂层的研究进展[J]. 材料导报, 2025, 39(14): 24060008-11.
[6] 解伟荣, 周涵. 柔性电响应动态热辐射调控材料研究进展[J]. 材料导报, 2025, 39(1): 24110064-8.
[7] 李歌, 马子然, 闾菲, 彭胜攀, 佟振伟. 基于机器学习高通量筛选二氧化碳还原电催化剂的研究进展[J]. 材料导报, 2025, 39(1): 23110048-13.
[8] 李迎春, 杨更生, 杨明宣, 邱明, 范恒华. 调制周期对磁控溅射Cr/类石墨碳多层膜腐蚀-磨损性能的影响[J]. 材料导报, 2024, 38(21): 23070129-7.
[9] 邱国兴, 蔡明冲, 张毅, 苏炳瑞, 杨永坤, 李小明. 基于灰色关联分析和机器学习的高炉铁水硅含量预测[J]. 材料导报, 2024, 38(20): 23080170-6.
[10] 王博, 盛鹏, 徐丽, 李圣驿, 白会涛, 李慧, 薛晴. 材料基因工程技术在电工材料研发中的应用与展望[J]. 材料导报, 2024, 38(13): 23020098-17.
[11] 张琦祥, 苑峻豪, 李震, 李文杰, 孙丹, 王清, 董闯. 基于第一性原理计算的固溶体合金集成学习设计方法[J]. 材料导报, 2024, 38(13): 23030089-8.
[12] 龙武剑, 罗盛禹, 程博远, 冯甘霖, 李利孝. 机器学习算法用于自密实混凝土性能设计的研究进展[J]. 材料导报, 2024, 38(11): 22110224-10.
[13] 张伟钢, 李娇, 吕丹丹. 涂料助剂对PDMS改性环氧树脂/Al复合涂层性能的影响[J]. 材料导报, 2024, 38(10): 23010030-5.
[14] 高志玉, 樊献金, 高思达, 薛维华. 基于多模型机器学习的合金结构钢回火力学性能研究[J]. 材料导报, 2023, 37(6): 21090025-7.
[15] 吕丹丹, 李慕荣, 张伟钢. 超疏水PDMS改性聚氨酯/黄铜复合涂层的制备及性能表征[J]. 材料导报, 2023, 37(4): 21060116-6.
[1] Pei HE, Weizhi YAO, Jianming LYU, Bo GAO, Xianrong LI. Radiation Resistance Design and Nanoscale Second-phase Particles Characterization for ODS Steels: a Review[J]. Materials Reports, 2018, 32(1): 34 -40 .
[2] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
[3] YANG Xiaojie, DONG Binghai, CHEN Fengxiang, WAN Li, ZHAO Li, WANG Shimin. One-dimensional TiO2 Photoanodes for Dye-sensitized Solar Cells: Fabrication and Applications[J]. Materials Reports, 2017, 31(17): 138 -145 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] ZHU Lijuan, WANG Min, GU Zhengwei, HE Lingling. Research on Stretch Bending Forming of Stainless Steel Curved Beam[J]. Materials Reports, 2017, 31(24): 179 -181 .
[6] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] FU Yu, HE Junbao, ZHANG Ping, LENG Yumin, MA Benyuan, LI Jiyan. Single Crystal Growth and Physical Properties of Layered Transitional Metal Bismuthide BaAg2-δBi2[J]. Materials Reports, 2018, 32(12): 2043 -2046 .
[9] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[10] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed