Abstract: Photothermal conversion is currently the most popular and common way of solar energy utilizing worldwide, and solar selectively absorptive coating with high solar absorption and low infrared emissivity can significantly improve the efficiency. Compared with absorptive coatings used in medium and low temperatures (0<T<400 ℃), high temperature (T≥400 ℃) solar selectively absorptive coatings show great potential for development and applicative prospects. However, the aging and failure of them at high-temperatures limit their applications. Therefore, there is an urgent need to develop solar selectively absorptive coatings with excellent spectral selectivity and high-temperature thermal stability. In this paper, the design mechanism of solar selectively absorptive coating is outlined. And the types and latest developments of absorptive coatings with high-temperature thermal stability are summarized, mainly including bimetallic ceramics, transition metal compounds, and high-entropy alloy nitride multilayer structures. The main failure mechanisms and thermal stability enhancement strategies are classified and discussed. At the same time, the preparation processes of various high-temperature absorptive coatings are discussed, and accelerated aging tests and life predictive methods are summarized. Finally the problems and research directions faced by high-temperature solar selectively absorptive coatings are pointed out and discussed.
1 Ding Z, Qi C, Wang Y X, et al. Sustainable Energy Technologies and Assessments, 2022, 52(Part A), 102031. 2 Lin K T, Lin H, Yang T S, et al. Nature Communications, 2020, 11(1), 1389. 3 No L, Jerman I. Solar Energy Materials and Solar Cells, 2022, 238, 111625. 4 Hao W, Chiou K, Qiao Y M, et al. Nanoscale, 2018, 10(14), 6306. 5 Ghai V, Singh H, Agnihotri P K. ACS Applied Optical Materials, 2023, 1(1), 252. 6 Tabor. U. S. patent application, US19592917817, 1959. 7 Liu B, Wang C Y, Bazri S, et al. Powder Technology, 2021, 377(2), 939. 8 Zhang J, Wang C B, Shi J, et al. Advanced Energy and Sustainability Research, 2022, 3(3), 2100195. 9 Li Y, Lin C J, Huang J Y, et al. Global Challenges, 2021, 5(1), 2000058. 10 Xu K, Du M, Hao L, et al. Journal of Materiomics, 2020, 6(1), 167. 11 Bello M, Shanmugan S. Journal of Alloys and Compounds, 2020, 839(25), 155510. 12 Grosjean A, Soum-Glaude A, Thomas L. Solar Energy Materials and Solar Cells, 2021, 230(15), 111280. 13 Wang W, Wen H X, Ling S, et al. Journal of Materials Chemistry A, 2018, 6(32), 15690. 14 Wang C B, Cheng W, Ma P J, et al. Journal of Materials Chemistry A, 2017, 5(6), 2852. 15 Selvakumar N, Barshilia H C. Solar Energy Materials and Solar Cells, 2012, 98, 1. 16 Noč L, Šest E, Kapun G, et al. Energy & Environmental Science, 2019, 12(5), 1679. 17 Li Y, Lin C J, Wu Z X, et al. Advanced Materials, 2021, 33(1), 2005074. 18 Olson K D, Talghader J J. Optics Express, 2012, 20(S4), A554. 19 Burlafinger K, Vetter A, Brabec C J. Solar Energy, 2015, 120, 428. 20 Niranjan K, Soum-Glaude A, Carling-Plaza A, et al. Solar Energy Materials and Solar Cells, 2021, 221, 110905. 21 Chen Z H, Boström T. Solar Energy Materials and Solar Cells, 2016, 157, 777. 22 Zhang K, Hao L, Du M, et al. Renewable and Sustainable Energy Reviews, 2017, 67, 1282. 23 Cao F, McEnaney K, Chen G, et al. Energy & Environmental Science, 2014, 7(5), 1615. 24 Dan A, Barshilia H C, Chattopadhyay K, et al. Renewable and Sustainable Energy Reviews, 2017, 79, 1050. 25 Zheng L Q, Zhou F Y, Zhou Z D, et al. Solar Energy, 2015, 115, 341. 26 Nuru Z Y, Motaung D E, Kaviyarasu K, et al. Journal of Alloys and Compounds, 2016, 664(15), 161. 27 Antonaia A, Castaldo A, Addonizio M L, et al. Solar Energy Materials and Solar Cells, 2010, 94(10), 1604. 28 Kotilainen M, Mizohata K, Honkanen M, et al. Solar Energy Materials and Solar Cells, 2014, 120(Part B), 462. 29 Bhagat S K, Theodore N D, Alford T L. Thin Solid Films, 2008, 516(21), 7451. 30 Cao F, Kraemer D, Sun T Y, et al. Advanced Energy Materials, 2015, 5(2), 1401042. 31 Ding D W, Wei W J, He X P, et al. Solar Energy, 2021, 228(1), 413. 32 Chookajorn T, Murdoch H A, Schuh C A. Science, 2012, 337(6097), 951. 33 Tu C J, Gao J H, Hui S, et al. Applied Surface Science, 2015, 331(15), 285. 34 Wang X Y, Gao J H, Hu H B, et al. Nano Energy, 2017, 37, 232. 35 Yang J L, Shen H L, Yang Z Y, et al. ACS Applied Materials & Interfaces, 2021, 13(12), 14587. 36 Cao F, Kraemer D, Tang L, et al. Energy & Environmental Science, 2015, 8(10), 3040. 37 Wu Z X, Wang J, Liu Y J, et al. Materials Today Physics, 2021, 18, 100388. 38 Gao X H, Wang C B, Guo Z M, et al. Optical Materials, 2016, 58, 219. 39 Liu Y J, Wu Z X, Yin L, et al. Solar Energy Materials and Solar Cells, 2019, 200(15), 109946. 40 Cao F, Tang L, Li Y, et al. Solar Energy Materials and Solar Cells, 2017, 160, 12. 41 Wang J, Ren Z K, Luo Y, et al. ACS Applied Materials & Interfaces, 2021, 13(34), 40522. 42 Hu C Q, Guo K Y, Li Y K, et al. Thin Solid Films, 2019, 688(31), 137339. 43 Gao X H, Theiss W, Shen Y Q, et al. Solar Energy Materials and Solar Cells, 2017, 167, 150. 44 Gao X H, Guo Z M, Geng Q F, et al. Solar Energy Materials and Solar Cells, 2016, 157, 543. 45 Kondaiah P, Niranjan K, John S, et al. Solar Energy Materials and Solar Cells, 2019, 198(15), 26. 46 Qiu X L, Gao X H, Zhou T H, et al. Solar Energy, 2019, 181(15), 88. 47 Qiu X L, Gao X H, He C Y, et al. RSC Advances, 2019, 9(51), 29726. 48 Qiu X L, Gao X H, He C Y, et al. Solar Energy Materials and Solar Cells, 2020, 211(1), 110533. 49 Qiu X L, He C Y, Zhao P, et al. Materials Today Physics, 2022, 24, 100690. 50 Gao X H, Guo Z M, Geng Q F, et al. Solar Energy Materials and Solar Cells, 2017, 163, 91. 51 Jyothi J, Chaliyawala H, Srinivas G, et al. Solar Energy Materials and Solar Cells, 2015, 140, 209. 52 Jyothi J, Biswas A, Sarkar P, et al. Applied Physics A, 2017, 123, 496. 53 Barshilia H C. Solar Energy Materials and Solar Cells, 2014, 130, 322. 54 Wu Y X, Wang C, Sun Y, et al. Solar Energy Materials and Solar Cells, 2015, 134, 373. 55 Liu Y, Wang Z F, Lei D Q, et al. Solar Energy Materials and Solar Cells, 2014, 127, 143. 56 Ning Y P, Wang W W, Wang L, et al. Solar Energy Materials and Solar Cells, 2017, 167, 178. 57 Paldey S, Deevi S C. Materials Science and Engineering:A, 2002, 342(1-2), 58. 58 Chen L, Paulitsch J, Du Y, et al. Surface and Coatings Technology, 2012, 206(11-12), 2954. 59 Barshilia H C, Selvakumar N, Rajam K S, et al. Thin Solid Films, 2008, 516(18), 6071. 60 Barshilia H C, Selvakumar N, Rajam K S, et al. Solar Energy Materials and Solar Cells, 2008, 92(4), 495. 61 Dan A, Jyothi J, Chattopadhyay K, et al. Solar Energy Materials and Solar Cells, 2016, 157, 716. 62 Wu Y X, Wang C, Sun Y, et al. Solar Energy, 2015, 119, 18. 63 Thobor-Keck A, Lapostolle F, Dehlinger A S, et al. Surface and Coatings Technology, 2005, 200(1-4), 264. 64 Rebouta L, Sousa A, Andritschky M, et al. Applied Surface Science, 2015, 356(30), 203. 65 Al-Rjoub A, Rebouta L, Cunha N F, et al. Solar Energy, 2020, 207(1), 192. 66 Dan A, Sainz-Menchón M, Gabirondo-López J, et al. Solar Energy, 2023, 252(1), 403. 67 Kondaiah P, Niranjan K, Kavan S, et al. Solar Energy, 2022, 232(15), 73. 68 Liu H D, Wan Q, Xu Y R, et al. Solar Energy Materials and Solar Cells, 2015, 134, 261. 69 Zou C W, Xie W, Shao L X. Solar Energy Materials and Solar Cells, 2016, 153, 9. 70 Geng Q F, Zhao X, Gao X H, et al. Journal of the American Ceramic Society, 2011, 94(3), 827. 71 Rubin E B, Chen Y M, Chen R K. Solar Energy Materials and Solar Cells, 2019, 195(15), 81. 72 Geng Q F, Zhao X, Gao X H, et al. Solar Energy Materials and Solar Cells, 2012, 105, 293. 73 Mahallawy N E, Shoeib M, Ali Y. Journal of Coatings Technology and Research, 2014, 11, 979. 74 He C Y, Zhao P, Qiu X L, et al. Solar RRL, 2021, 6(1), 2100752. 75 Guo H X, He C Y, Qiu X L, et al. Solar Energy Materials and Solar Cells, 2020, 209(1), 110444. 76 Thomas N H, Chen Z, Fan S H, et al. Scientific Reports, 2017, 7, 5362. 77 Zhao S S, Qiu X L, He C Y, et al. ACS Applied Nano Materials, 2021, 4(5), 4504. 78 He C Y, Qiu X L, Yu D M, et al. Journal of Materiomics, 2021, 7(3), 460. 79 Guo H X, Yu D M, He C Y, et al. Surfaces and Interfaces, 2021, 24, 101062. 80 He C Y, Gao X H, Qiu X L, et al. Solar RRL, 2021, 5(4), 2000790. 81 Al-Rjoub A, Rebouta L, Costa P, et al. Solar Energy Materials and Solar Cells, 2019, 191, 235. 82 Ye Y F, Wang Q, Lu J, et al. Materials Today, 2016, 19(6), 349. 83 He C Y, Zhao P, Gao X H, et al. Materials Today Physics, 2022, 27, 100836. 84 He C Y, Gao X H, Yu D M, et al. ACS Applied Materials & Interfaces, 2021, 13(14), 16987. 85 He C Y, Zhao P, Gao X H, et al. Materials Letters, 2022, 329(15), 133198. 86 He C Y, Zhao P, Gao X H, et al. Journal of Alloys and Compounds, 2023, 934(10), 167899. 87 Amri A, Jiang Z T, Pryor T, et al. Renewable and Sustainable Energy Reviews, 2014, 36, 316. 88 Shah A A, Ungaro C, Gupta M C. Solar Energy Materials and Solar Cells, 2015, 134, 209. 89 Wei Q, Pang X M, Zhou J X, et al. Solar Energy, 2018, 171(1), 247. 90 Gao X H, Guo Z M, Geng Q F, et al. RSC Advances, 2016, 6(68), 63867. 91 Liu H D, Yang B, Mao M R, et al. Applied Surface Science, 2020, 501(31), 144025. 92 Rojas-Morín A, Fernández-Reche J. Revista de Metalurgia, 2011, 47(2), 112. 93 Torres J F, Ellis I, Coventry J. Solar Energy Materials and Solar Cells, 2020, 218, 110719. 94 Reoyo-Prats R, Carling-Plaza A, Faugeroux O, et al. Solar Energy Materials and Solar Cells, 2019, 193, 92.