Please wait a minute...
材料导报  2025, Vol. 39 Issue (14): 24060008-11    https://doi.org/10.11896/cldb.24060008
  金属与金属基复合材料 |
高温太阳光谱选择性吸收涂层的研究进展
豆裕, 范同祥*
上海交通大学材料科学与工程学院、金属基复合材料国家重点实验室,上海 200240
Research Progress of High-temperature Solar Selectively Absorptive Coatings
DOU Yu, FAN Tongxiang*
State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, shanghai 200240, China
下载:  全 文 ( PDF ) ( 9166KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 光热转换是当前世界范围内最普及和最常见的太阳能利用方式,而同时具有高太阳能吸收率和低红外发射率的太阳光谱选择性吸收涂层可以显著提高光热转换效率。与中低温(0<T<400 ℃)应用的太阳光谱选择性吸收涂层相比,高温(T≥400 ℃)太阳光谱选择性吸收涂层表现了巨大的发展潜力和应用前景。然而太阳光谱选择性吸收涂层在高温下的老化和失效问题制约了其在高温领域的应用。因此,迫切需要开发具有出色光谱选择性和高温热稳定性的选择性吸收涂层。本文从太阳光谱选择性吸收涂层的设计机理出发,总结了具有高温热稳定性的吸收涂层的类型和最新研究进展,主要包括双金属陶瓷、过渡金属化合物和高熵合金氮化物多层结构三大类,并分类讨论了其主要的失效机制和热稳定性增强策略。在此基础上探讨了各种耐高温吸收涂层的制备工艺,并综述了加速老化试验与寿命预测。最后指出并展望了高温太阳光谱选择性吸收涂层面临的问题及研究方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
豆裕
范同祥
关键词:  高温太阳光谱选择性吸收涂层  光热转换  热稳定性  加速老化试验  寿命预测    
Abstract: Photothermal conversion is currently the most popular and common way of solar energy utilizing worldwide, and solar selectively absorptive coating with high solar absorption and low infrared emissivity can significantly improve the efficiency. Compared with absorptive coatings used in medium and low temperatures (0<T<400 ℃), high temperature (T≥400 ℃) solar selectively absorptive coatings show great potential for development and applicative prospects. However, the aging and failure of them at high-temperatures limit their applications. Therefore, there is an urgent need to develop solar selectively absorptive coatings with excellent spectral selectivity and high-temperature thermal stability. In this paper, the design mechanism of solar selectively absorptive coating is outlined. And the types and latest developments of absorptive coatings with high-temperature thermal stability are summarized, mainly including bimetallic ceramics, transition metal compounds, and high-entropy alloy nitride multilayer structures. The main failure mechanisms and thermal stability enhancement strategies are classified and discussed. At the same time, the preparation processes of various high-temperature absorptive coatings are discussed, and accelerated aging tests and life predictive methods are summarized. Finally the problems and research directions faced by high-temperature solar selectively absorptive coatings are pointed out and discussed.
Key words:  high-temperature solar selectively absorptive coating    photothermal conversion    thermal stability    accelerated aging test    life prediction
出版日期:  2025-07-25      发布日期:  2025-07-29
ZTFLH:  TK51  
  TB34  
基金资助: 上海市科委项目(21511103400)
通讯作者:  * 范同祥,博士,上海交通大学材料学院教授、博士研究生导师。目前主要从事特种功能金属基复合材料和生物启迪功能材料方面的研究。txfan@sjtu.edu.cn   
作者简介:  豆裕,上海交通大学材料科学与工程学院硕士研究生,在范同祥教授的指导下进行研究。目前主要研究领域为基于仿生微纳米结构的太阳光谱选择性吸收涂层。
引用本文:    
豆裕, 范同祥. 高温太阳光谱选择性吸收涂层的研究进展[J]. 材料导报, 2025, 39(14): 24060008-11.
DOU Yu, FAN Tongxiang. Research Progress of High-temperature Solar Selectively Absorptive Coatings. Materials Reports, 2025, 39(14): 24060008-11.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24060008  或          https://www.mater-rep.com/CN/Y2025/V39/I14/24060008
1 Ding Z, Qi C, Wang Y X, et al. Sustainable Energy Technologies and Assessments, 2022, 52(Part A), 102031.
2 Lin K T, Lin H, Yang T S, et al. Nature Communications, 2020, 11(1), 1389.
3 No L, Jerman I. Solar Energy Materials and Solar Cells, 2022, 238, 111625.
4 Hao W, Chiou K, Qiao Y M, et al. Nanoscale, 2018, 10(14), 6306.
5 Ghai V, Singh H, Agnihotri P K. ACS Applied Optical Materials, 2023, 1(1), 252.
6 Tabor. U. S. patent application, US19592917817, 1959.
7 Liu B, Wang C Y, Bazri S, et al. Powder Technology, 2021, 377(2), 939.
8 Zhang J, Wang C B, Shi J, et al. Advanced Energy and Sustainability Research, 2022, 3(3), 2100195.
9 Li Y, Lin C J, Huang J Y, et al. Global Challenges, 2021, 5(1), 2000058.
10 Xu K, Du M, Hao L, et al. Journal of Materiomics, 2020, 6(1), 167.
11 Bello M, Shanmugan S. Journal of Alloys and Compounds, 2020, 839(25), 155510.
12 Grosjean A, Soum-Glaude A, Thomas L. Solar Energy Materials and Solar Cells, 2021, 230(15), 111280.
13 Wang W, Wen H X, Ling S, et al. Journal of Materials Chemistry A, 2018, 6(32), 15690.
14 Wang C B, Cheng W, Ma P J, et al. Journal of Materials Chemistry A, 2017, 5(6), 2852.
15 Selvakumar N, Barshilia H C. Solar Energy Materials and Solar Cells, 2012, 98, 1.
16 Noč L, Šest E, Kapun G, et al. Energy & Environmental Science, 2019, 12(5), 1679.
17 Li Y, Lin C J, Wu Z X, et al. Advanced Materials, 2021, 33(1), 2005074.
18 Olson K D, Talghader J J. Optics Express, 2012, 20(S4), A554.
19 Burlafinger K, Vetter A, Brabec C J. Solar Energy, 2015, 120, 428.
20 Niranjan K, Soum-Glaude A, Carling-Plaza A, et al. Solar Energy Materials and Solar Cells, 2021, 221, 110905.
21 Chen Z H, Boström T. Solar Energy Materials and Solar Cells, 2016, 157, 777.
22 Zhang K, Hao L, Du M, et al. Renewable and Sustainable Energy Reviews, 2017, 67, 1282.
23 Cao F, McEnaney K, Chen G, et al. Energy & Environmental Science, 2014, 7(5), 1615.
24 Dan A, Barshilia H C, Chattopadhyay K, et al. Renewable and Sustainable Energy Reviews, 2017, 79, 1050.
25 Zheng L Q, Zhou F Y, Zhou Z D, et al. Solar Energy, 2015, 115, 341.
26 Nuru Z Y, Motaung D E, Kaviyarasu K, et al. Journal of Alloys and Compounds, 2016, 664(15), 161.
27 Antonaia A, Castaldo A, Addonizio M L, et al. Solar Energy Materials and Solar Cells, 2010, 94(10), 1604.
28 Kotilainen M, Mizohata K, Honkanen M, et al. Solar Energy Materials and Solar Cells, 2014, 120(Part B), 462.
29 Bhagat S K, Theodore N D, Alford T L. Thin Solid Films, 2008, 516(21), 7451.
30 Cao F, Kraemer D, Sun T Y, et al. Advanced Energy Materials, 2015, 5(2), 1401042.
31 Ding D W, Wei W J, He X P, et al. Solar Energy, 2021, 228(1), 413.
32 Chookajorn T, Murdoch H A, Schuh C A. Science, 2012, 337(6097), 951.
33 Tu C J, Gao J H, Hui S, et al. Applied Surface Science, 2015, 331(15), 285.
34 Wang X Y, Gao J H, Hu H B, et al. Nano Energy, 2017, 37, 232.
35 Yang J L, Shen H L, Yang Z Y, et al. ACS Applied Materials & Interfaces, 2021, 13(12), 14587.
36 Cao F, Kraemer D, Tang L, et al. Energy & Environmental Science, 2015, 8(10), 3040.
37 Wu Z X, Wang J, Liu Y J, et al. Materials Today Physics, 2021, 18, 100388.
38 Gao X H, Wang C B, Guo Z M, et al. Optical Materials, 2016, 58, 219.
39 Liu Y J, Wu Z X, Yin L, et al. Solar Energy Materials and Solar Cells, 2019, 200(15), 109946.
40 Cao F, Tang L, Li Y, et al. Solar Energy Materials and Solar Cells, 2017, 160, 12.
41 Wang J, Ren Z K, Luo Y, et al. ACS Applied Materials & Interfaces, 2021, 13(34), 40522.
42 Hu C Q, Guo K Y, Li Y K, et al. Thin Solid Films, 2019, 688(31), 137339.
43 Gao X H, Theiss W, Shen Y Q, et al. Solar Energy Materials and Solar Cells, 2017, 167, 150.
44 Gao X H, Guo Z M, Geng Q F, et al. Solar Energy Materials and Solar Cells, 2016, 157, 543.
45 Kondaiah P, Niranjan K, John S, et al. Solar Energy Materials and Solar Cells, 2019, 198(15), 26.
46 Qiu X L, Gao X H, Zhou T H, et al. Solar Energy, 2019, 181(15), 88.
47 Qiu X L, Gao X H, He C Y, et al. RSC Advances, 2019, 9(51), 29726.
48 Qiu X L, Gao X H, He C Y, et al. Solar Energy Materials and Solar Cells, 2020, 211(1), 110533.
49 Qiu X L, He C Y, Zhao P, et al. Materials Today Physics, 2022, 24, 100690.
50 Gao X H, Guo Z M, Geng Q F, et al. Solar Energy Materials and Solar Cells, 2017, 163, 91.
51 Jyothi J, Chaliyawala H, Srinivas G, et al. Solar Energy Materials and Solar Cells, 2015, 140, 209.
52 Jyothi J, Biswas A, Sarkar P, et al. Applied Physics A, 2017, 123, 496.
53 Barshilia H C. Solar Energy Materials and Solar Cells, 2014, 130, 322.
54 Wu Y X, Wang C, Sun Y, et al. Solar Energy Materials and Solar Cells, 2015, 134, 373.
55 Liu Y, Wang Z F, Lei D Q, et al. Solar Energy Materials and Solar Cells, 2014, 127, 143.
56 Ning Y P, Wang W W, Wang L, et al. Solar Energy Materials and Solar Cells, 2017, 167, 178.
57 Paldey S, Deevi S C. Materials Science and Engineering:A, 2002, 342(1-2), 58.
58 Chen L, Paulitsch J, Du Y, et al. Surface and Coatings Technology, 2012, 206(11-12), 2954.
59 Barshilia H C, Selvakumar N, Rajam K S, et al. Thin Solid Films, 2008, 516(18), 6071.
60 Barshilia H C, Selvakumar N, Rajam K S, et al. Solar Energy Materials and Solar Cells, 2008, 92(4), 495.
61 Dan A, Jyothi J, Chattopadhyay K, et al. Solar Energy Materials and Solar Cells, 2016, 157, 716.
62 Wu Y X, Wang C, Sun Y, et al. Solar Energy, 2015, 119, 18.
63 Thobor-Keck A, Lapostolle F, Dehlinger A S, et al. Surface and Coatings Technology, 2005, 200(1-4), 264.
64 Rebouta L, Sousa A, Andritschky M, et al. Applied Surface Science, 2015, 356(30), 203.
65 Al-Rjoub A, Rebouta L, Cunha N F, et al. Solar Energy, 2020, 207(1), 192.
66 Dan A, Sainz-Menchón M, Gabirondo-López J, et al. Solar Energy, 2023, 252(1), 403.
67 Kondaiah P, Niranjan K, Kavan S, et al. Solar Energy, 2022, 232(15), 73.
68 Liu H D, Wan Q, Xu Y R, et al. Solar Energy Materials and Solar Cells, 2015, 134, 261.
69 Zou C W, Xie W, Shao L X. Solar Energy Materials and Solar Cells, 2016, 153, 9.
70 Geng Q F, Zhao X, Gao X H, et al. Journal of the American Ceramic Society, 2011, 94(3), 827.
71 Rubin E B, Chen Y M, Chen R K. Solar Energy Materials and Solar Cells, 2019, 195(15), 81.
72 Geng Q F, Zhao X, Gao X H, et al. Solar Energy Materials and Solar Cells, 2012, 105, 293.
73 Mahallawy N E, Shoeib M, Ali Y. Journal of Coatings Technology and Research, 2014, 11, 979.
74 He C Y, Zhao P, Qiu X L, et al. Solar RRL, 2021, 6(1), 2100752.
75 Guo H X, He C Y, Qiu X L, et al. Solar Energy Materials and Solar Cells, 2020, 209(1), 110444.
76 Thomas N H, Chen Z, Fan S H, et al. Scientific Reports, 2017, 7, 5362.
77 Zhao S S, Qiu X L, He C Y, et al. ACS Applied Nano Materials, 2021, 4(5), 4504.
78 He C Y, Qiu X L, Yu D M, et al. Journal of Materiomics, 2021, 7(3), 460.
79 Guo H X, Yu D M, He C Y, et al. Surfaces and Interfaces, 2021, 24, 101062.
80 He C Y, Gao X H, Qiu X L, et al. Solar RRL, 2021, 5(4), 2000790.
81 Al-Rjoub A, Rebouta L, Costa P, et al. Solar Energy Materials and Solar Cells, 2019, 191, 235.
82 Ye Y F, Wang Q, Lu J, et al. Materials Today, 2016, 19(6), 349.
83 He C Y, Zhao P, Gao X H, et al. Materials Today Physics, 2022, 27, 100836.
84 He C Y, Gao X H, Yu D M, et al. ACS Applied Materials & Interfaces, 2021, 13(14), 16987.
85 He C Y, Zhao P, Gao X H, et al. Materials Letters, 2022, 329(15), 133198.
86 He C Y, Zhao P, Gao X H, et al. Journal of Alloys and Compounds, 2023, 934(10), 167899.
87 Amri A, Jiang Z T, Pryor T, et al. Renewable and Sustainable Energy Reviews, 2014, 36, 316.
88 Shah A A, Ungaro C, Gupta M C. Solar Energy Materials and Solar Cells, 2015, 134, 209.
89 Wei Q, Pang X M, Zhou J X, et al. Solar Energy, 2018, 171(1), 247.
90 Gao X H, Guo Z M, Geng Q F, et al. RSC Advances, 2016, 6(68), 63867.
91 Liu H D, Yang B, Mao M R, et al. Applied Surface Science, 2020, 501(31), 144025.
92 Rojas-Morín A, Fernández-Reche J. Revista de Metalurgia, 2011, 47(2), 112.
93 Torres J F, Ellis I, Coventry J. Solar Energy Materials and Solar Cells, 2020, 218, 110719.
94 Reoyo-Prats R, Carling-Plaza A, Faugeroux O, et al. Solar Energy Materials and Solar Cells, 2019, 193, 92.
[1] 张宏飞, 张久鹏, 王帅, 陈子璇, 李哲, 裴建中. 沥青化学组分与宏观性能靶向关系研究综述与展望[J]. 材料导报, 2025, 39(4): 24010162-15.
[2] 周传辉, 王玺朝, 何国杜, 董岚, 吴子华, 谢华清, 王元元. 基于高稳定水基石墨烯/骨胶纳米流体的光热转换性能研究[J]. 材料导报, 2025, 39(3): 23120093-6.
[3] 冷建成, 赵雷, 张新, 许宏伟. 基于磁记忆在线监测的再制造毛坯疲劳寿命预测方法[J]. 材料导报, 2025, 39(2): 23040250-6.
[4] 郭适, 郭启麟, 张瀛博, 巴泓雨, 陆相林, 刘会娥, 陈爽. 石墨烯/碳纳米管复合多孔材料用于光热辅助高黏重油吸附[J]. 材料导报, 2025, 39(13): 24050053-6.
[5] 李莉佳, 刘振晖, 尹晓静, 严文强, 郝兆朋. 轨道车辆零部件材料多轴疲劳寿命预测理论与方法研究进展[J]. 材料导报, 2025, 39(12): 23100024-11.
[6] 孙文浩, 田君, 高洪波, 刘娜, 张锟, 梁晓嫱, 王聪杰, 王浩辰. 钠离子电池关键材料的热行为研究新进展[J]. 材料导报, 2025, 39(11): 24070213-11.
[7] 党奔, 陈志俊. 木基光热转换功能材料的应用研究进展[J]. 材料导报, 2025, 39(1): 24100143-13.
[8] 何涛, 马国政, 李海庆, 石佳东, 李振, 郭伟玲, 邢志国. 固体润滑齿轮接触疲劳寿命及影响因素研究现状[J]. 材料导报, 2025, 39(1): 23120091-15.
[9] 杨羽轩, 杜桂芳, 柳召刚, 赵金钢, 陈明光, 胡艳宏, 吴锦绣, 冯福山. 2-氨基烟酸镧铈对PVC热稳定性的影响[J]. 材料导报, 2024, 38(7): 22060141-8.
[10] 靳红华, 任青阳, 肖宋强, 任小坤. 模拟酸雨侵蚀环境下悬臂抗滑桩耐久性极限寿命预测[J]. 材料导报, 2024, 38(5): 22070148-8.
[11] 梁宁慧, 毛金旺, 游秀菲, 刘新荣, 周侃. 多尺度聚丙烯纤维混凝土弯曲疲劳寿命试验及数值模拟[J]. 材料导报, 2024, 38(4): 22040023-8.
[12] 冯炜森, 杨成鹏, 贾斐. 复合材料层压板S-N曲线模型的综述与评估[J]. 材料导报, 2024, 38(22): 23050190-10.
[13] 董昊良, 李化建, 杨志强, 温家馨, 黄法礼, 王振, 易忠来. 混凝土冻融破坏机理及寿命预测方法[J]. 材料导报, 2024, 38(2): 22070123-11.
[14] 张思钊, 刘淳, 姜勇刚, 冯坚. 聚酰亚胺气凝胶的耐高温性能研究进展[J]. 材料导报, 2024, 38(13): 23040260-11.
[15] 杨志强, 李化建, 温家馨, 董昊良, 易忠来, 黄法礼, 王振. 高速铁路无砟轨道水泥基材料与结构的疲劳损伤及服役寿命综述[J]. 材料导报, 2023, 37(S1): 22100219-8.
[1] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[2] WU Wei, CHEN Shiying, ZONG Mengjingzi. Dielectric Properties and Thermal Stability of Nano-Al2O3/Polyether Sulfone-epoxy Resin Composites[J]. Materials Reports, 2017, 31(20): 21 -24 .
[3] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[4] MO Peicheng, WU Yi, YU Wenlin, WANG Jilin, ZOU Zhengguang, ZHONG Shenglin, WANG Peng. In Situ Synthesis of PcBN Composites by cBN-Ti-Al-Si and Their Mechanical Property[J]. Materials Reports, 2018, 32(14): 2355 -2359 .
[5] HU Yaoqiang, CHEN Fajin, LIU Haining, ZHANG Huifang, WU Zhijian, YE Xiushen. Preparation of Poly(N-isopropylacrylamide) Hydrogel and Its Thermally Induced Aggregation Behavior[J]. Materials Reports, 2018, 32(14): 2491 -2496 .
[6] SONG Gang, CHI Jiayu, YU Jingwei, LIU Liming. Corrosion Behavior of Mg-steel Laser-TIG Hybrid Welding Joint[J]. Materials Reports, 2018, 32(16): 2773 -2777 .
[7] HUANG Hui, HAN Jianfeng, WANG Yishun, XIA Yang, ZHANG Jun, GAN Yongping, LIANG Chu, ZHANG Wenkui. Supercritical CO2 Assisting Cladding of LiMnPO4 on the Surface of Li[Li0.2-Mn0.54Co0.13Ni0.13]O2 and Its Electrochemical Properties[J]. Materials Reports, 2018, 32(23): 4072 -4078 .
[8] WANG Zhonghui, XIN Yong. Molecular Dynamics Simulation on the Relationship of Oxygen Diffusion and Polymer Chains Activity[J]. Materials Reports, 2019, 33(8): 1293 -1297 .
[9] CHANG Jingjing. Spin Coating Epitaxial Films[J]. Materials Reports, 2019, 33(12): 1919 -1920 .
[10] ZHUANG Xiaodong, LI Rongxing, YU Xiaohua, XIE Gang, HE Xiaocai, XU Qingxin. Preparation of Lithium Titanate Electrode Materials by Solid Phase Method[J]. Materials Reports, 2019, 33(16): 2654 -2659 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed