Please wait a minute...
材料导报  2025, Vol. 39 Issue (15): 24080206-10    https://doi.org/10.11896/cldb.24080206
  金属与金属基复合材料 |
高熵合金结构及性能的第一性原理模拟预测
闫肃, 豆艳坤*, 曹金利, 贺新福
中国原子能科学研究院反应堆工程技术研究所,北京 102400
First-principles Simulation Prediction of Structure and Properties of High-entropy Alloys
YAN Su, DOU Yankun*, CAO Jinli, HE Xinfu
Division of Reactor Engineering Technology Research, China Institute of Atomic Energy, Beijing 102400, China
下载:  全 文 ( PDF ) ( 5466KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 高熵合金(HEAs)成分复杂且具有多主元效应,表现出优异的综合性能和广阔的应用前景。然而,高熵合金的成分设计和性能预测面临着巨大的挑战,需要借助有效的理论模型和计算手段。第一性原理方法为从原子尺度研究高熵合金结构与性能提供了有效手段。本文总结了高熵合金的第一性原理建模方法,包括相干势近似法、局部自洽多重散射法、 特殊的准无序超胞法、虚拟晶格近似法。重点针对第一性原理在高熵合金中的应用进行了综述,介绍了第一性原理方法应用于预测高熵合金的电子结构、相稳定性和力学性能等,并验证了计算模型的可靠性。最终总结了第一性原理在高熵合金建模、结构以及性能预测方面存在的局限性,并对第一性原理在高熵合金中的应用进行了展望。期望为高熵合金的理论研究和实际应用提供一定参考和启示。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
闫肃
豆艳坤
曹金利
贺新福
关键词:  高熵合金  第一性原理  力学性质  相稳定性  电学性质  热力学性质    
Abstract: High-entropy alloys (HEAs) are characterized by their complex composition, and the multi-principal element effect, exhibiting exceptional comprehensive performance and broad application prospects. However, the design and performance prediction of high-entropy alloys face significant challenges, necessitating the use of effective theoretical models and computational methods. First-principles methods, based on the principles of quantum mechanics, offer a microscopic scale simulation approach that explores the structure and properties of materials from the atomic and electronic levels, providing new insights and tools for the study of high-entropy alloys. This paper summarizes the current computational models in first-principles calculations for high-entropy alloys, including the coherent potential approximation (CPA), locally self-consistent multiple scattering (LSMS), special quasi-random structures (SQS), and virtual crystal approximation (VCA), reviewes the application of first-principles in high-entropy alloys, introduces the prediction of the electronic structure, phase stability, and mechanical properties of high-entropy alloys with first-principles methods, and verifies the reliability of the computational models. Finally, it outlines the limitations of first-principles methods in the modeling, structure, and performance prediction of high-entropy alloys, offering a perspective on their future applications. These findings may provide valuable references and insights for both theoretical research and the practical application of high-entropy alloys.
Key words:  high-entropy alloy    first-principles    mechanical property    phase stability    electrical property    thermodynamic property
出版日期:  2025-08-10      发布日期:  2025-08-13
ZTFLH:  TB31  
基金资助: 国家自然科学基金(12405324);中核集团菁英人才项目;中国原子能科学研究院院长基金(219256)
通讯作者:  豆艳坤,中国原子能科学研究院研究员、博士研究生导师。目前主要从事反应堆材料服役性能多尺度模拟及新型核材料研发工作,涉及压力容器钢、铁马钢和高熵合金等材料。douyankun3@163.com   
作者简介:  闫肃,现为中国原子能科学研究院反应堆工程技术研究所硕士研究生,在豆艳坤教授的指导下进行研究。目前主要研究领域为高熵合金的第一性原理计算以及辐照的分子动力学模拟。
引用本文:    
闫肃, 豆艳坤, 曹金利, 贺新福. 高熵合金结构及性能的第一性原理模拟预测[J]. 材料导报, 2025, 39(15): 24080206-10.
YAN Su, DOU Yankun, CAO Jinli, HE Xinfu. First-principles Simulation Prediction of Structure and Properties of High-entropy Alloys. Materials Reports, 2025, 39(15): 24080206-10.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24080206  或          https://www.mater-rep.com/CN/Y2025/V39/I15/24080206
1 Yeh J W, Chen S K, Lin S J, et al. Advanced Engineering Materials, 2004, 6(5), 299.
2 Cantor B, Chang I T H, Knight P, et al. Materials Science and Enginee-ring A, 2004, 375, 213.
3 Gludovatz B, Hohenwarter A, Catoor D, et al. Science, 2014, 345(6201), 1153.
4 Koželj P, Vrtnik S, Jelen A, et al. Physical Review Letters, 2014, 113(10), 107001.
5 Luo H, Li Z, Raabe D. Scientific Reports, 2017, 7, 9892.
6 Luo H, Lu W, Fang X, et al. Materials Today, 2018, 21(10), 1003.
7 Segui C. Journal of Applied Physics, 2014, 115(11), 113903.
8 Egami T, Guo W, Rack P D, et al. Metallurgical and Materials Transactions A, 2014, 45A(1), 180.
9 Nagase T, Anada S, Rack P D, et al. Intermetallics, 2013, 38, 70.
10 Baerends E J, Ellis D E, Ros P. Chemical Physics, 1973, 2(1), 41.
11 Kohn W, Hohenberg P, 1964.
12 Yan H, Yang W, Song X M, et al. Journal of Beijing University of Technology, 2004(2), 210 (in Chinese).
严辉, 杨巍, 宋雪梅, 等. 北京工业大学学报, 2004(2), 210.
13 Zhang H L, Cai D D, Sun X, et al. Journal of Materials Science and Technology, 2022, 121, 105.
14 Liang H Y, Bai R, He X L, et al. Materials Reports, 2018, 32(2), 333 (in Chinese).
梁红玉, 白瑞, 贺秀丽, 等. 材料导报, 2018, 32(2), 333.
15 Shan X H, Lei W N, Cong M Q, et al. Tool Engineering, 2023, 57(6), 10 (in Chinese).
单星海, 雷卫宁, 丛孟启, 等. 工具技术, 2023, 57(6), 10.
16 Jasiewicz K, Wiendlocha B, Korben P, et al. Physica Status Solidi-Rapid Research Letters, 2016, 10(5), 415.
17 Gyorffy B. Physical Review B, 1972, 5, 2382.
18 Wang, Stocks, Shelton, et al. Physical Review Letters, 1995, 75(15), 2867.
19 Eisenbach M, Larkin J, Lutjens J, et al. Computer Physics Communications, 2015, 259.
20 Zunger A, Wei S H, Ferreira L G, et al. Physical Review Letters, 1990, 65(3), 353.
21 Gao M C, Niu C, Jiang C, et al. High-entropy alloys: fundamentals and applications, Springer International Publishing, Cham, 2016, pp.333.
22 Bellaiche L, Vanderbilt D. Physical Review B, 2000, 61(12), 7877.
23 Zhang N, Gankov, Li Z M. Special Casting & Nonferrous Alloys, 2022, 42(3), 296 (in Chinese).
张楠, 甘科夫, 李志明. 特种铸造及有色合金, 2022, 42(3), 296.
24 Wei S H, Ferreira L G, Bernard J E, et al. Physical Review B: Condensed Matter, 1990, 42(15), 9622.
25 Wang S. First-principles study of properties of medium and high-entropy alloys. Master's Thesis, North University of China, China, 2019 (in Chinese).
王硕. 等组元中、高熵合金性能的第一性原理研究. 硕士学位论文, 中北大学, 2019.
26 Gao M C, Suzuki Y, Schweiger H, et al. Journal of Physics-Condensed Matter, 2013, 25(7), 075402.
27 Zaddach A J, Niu C, Koch C C, et al. JOM Journal of the Minerals Metals and Materials Society, 2013, 65(12), 1780.
28 Lu Z W, Wei S H, Zunger A. Physical Review B: Condensed Matter, 1992, 45(18), 10314.
29 Wei S H, Zunger A. Journal of Applied Physics, 1995, 78(6), 3846.
30 Jiang C, Stanek C R, Sickafus K E, et al. Physical Review B: Condensed Matter, 2009, 79(10), 104203.
31 King D J M, Burr P A, Obbard E G, et al. Journal of Nuclear Materials, 2017, 488, 70.
32 Middleburgh S C, King D M, Lumpkin G R, et al. Journal of Alloys and Compounds, 2014, 599, 179.
33 Karabin M, Mondal W R, Oestlin A, et al. Journal of Materials Science, 2022, 57(23), 10677.
34 Wang S, Xiong J, Li D, et al. Materials Letters, 2021, 282, 128754.
35 Ren X L, Zhang W W, Wu X Y, et al. Acta Physica Sinica, 2020, 69(4), 12 (in Chinese).
任县利, 张伟伟, 伍晓勇, 等. 物理学报, 2020, 69(4), 12.
36 Troparevsky M C, Morris J R, Daene M, et al. JOM Journal of the Mi-nerals Metals and Materials Society, 2015, 67(10), 2350.
37 Guo S, Liu C T. Progress in Natural Science-Materials International, 2011, 21(6), 433.
38 Ren M X, Li B S, Fu H Z. Transactions of Nonferrous Metals Society of China, 2013, 23(4), 991.
39 Zhang Y, Zuo T T, Tang Z, et al. Progress in Materials Science, 2014, 61, 1.
40 Miracle D B, Miller J D, Senkov O N, et al. Entropy, 2014, 16(1), 494.
41 Guo S, Hu Q, Ng C, et al. Intermetallics, 2013, 41, 96.
42 Otto F, Yang Y, Bei H, et al. Acta Materialia, 2013, 61(7), 2628.
43 Huang S, Vida A, Li W, et al. Applied Physics Letters, 2017, 110(24), 241902.
44 Zhou L. First-principles study of mechanical properties of AlxCoCrFeNi (x=1, 2) high-entropy alloys. Master's Thesis, Zhengzhou University, China, 2011 (in Chinese).
周磊. 高熵合金AlxCoCrFeNi(x=1, 2)力学性质的第一性原理研究. 郑州大学, 2012.
45 Born M, Huang K, Lax M. American Journal of Physics, 1955, 23, 474.
46 Xiao H, Liu Y, Wang K, et al. Acta Metallurgica Sinica-English Letters, 2021, 34(4), 455.
47 Pugh S F. Philosophical Magazine Series 6, 1954, 45, 823.
48 Wu H, Huang S, Zhu C, et al. Progress in Natural Science-Materials International, 2020, 30(2), 239.
49 Quong A A, Liu A Y. Physical Review B, 1997, 56(13), 7767.
50 Wu J, Yang Z, Xian J, et al. Frontiers in Materials, 2020, 7, 590143.
51 Tian F Y, Delczeg L, Chen N X, et al. Physical Review B, 2013, 88(8), 085128.
52 Jiang Z J, He J Y, Wang H Y, et al. Materials Research Letters, 2016, 4(4), 226.
53 Foreman A J E. Acta Metallurgica, 1955, 3, 322.
54 Stocks G M, Butler W H. Physical Review Letters, 1982, 48(1), 55.
55 Wang D, Liu L, Chen M, et al. Acta Materialia, 2020, 199, 443.
56 Kubo R. Journal of the Physical Society of Japan, 1957, 12, 570.
57 Butler W H. Physical Review B: Condensed Matter, 1985, 31(6), 3260.
58 Mu S, Samolyuk G D, Wimmer S, et al. NPJ Computational Materials, 2019, 5(1), 1112.
59 Raghuraman V, Wang Y, Widom M. Applied Physics Letters, 2021, 119(12), 121903.
60 Lu P, Saal J E, Olson G B, et al. Scripta Materialia, 2018, 153, 19.
61 Duong T, Wang Y, Yan X, et al. DOI:10.48550/arXiv. 2104. 10590.
62 Yen C C, Lu H N, Tsai M H, et al. Corrosion Science, 2019, 157, 462.
63 Lu C Y, Niu L L, Chen N J, et al. Nature Communications, 2016, 7, 13564.
64 Pickering E J, Carruthers A W, Barron P J, et al. Entropy, 2021, 23(1), 98.
65 Zhang Y W, Egami T, Weber W J. MRS Bulletin, 2019, 44(10), 798.
66 Zhang P, Jiang L, Yang J X, et al. Materials Reports, 2022, 36(14), 5 (in Chinese).
张平, 蒋丽, 杨金学, 等. 材料导报, 2022, 36(14), 5.
67 Zhang Y W, Zhao S J, Weber W J, et al. Current Opinion in Solid State & Materials Science, 2017, 21(5), 221.
68 Zong Y, Hashimoto N, Oka H. Nuclear Materials and Energy, 2022, 31, 101158.
69 Wang L F, Dou Y K, Zhao Y P, et al. Atomic Energy Science and Technology, 2023, 57(S1), 174 (in Chinese).
王林枫, 豆艳坤, 赵永鹏, 等. 原子能科学技术, 2023, 57(S1), 174.
70 Xu B, Fu S Z, Zhao S J, et al. Materials Reports, 2020, 34(17), 17031 (in Chinese).
徐彪, 付上朝, 赵仕俊, 等. 材料导报, 2020, 34(17), 17031.
71 Zhao S, Zhang Y, Weber W J. Encyclopedia of Materials: Metals and Alloys,2022,2, 533.
72 Norgett M J, Robinson M T, Torrens I M. Nuclear Engineering and Design, 1975, 33(1), 50.
73 Zhao S J, Liu B, Samolyuk G D, et al. Journal of Nuclear Materials, 2020, 529, 151941.
74 Hargather C Z. High-entropy materials: theory, experiments, and applications, Springer International Publishing, Cham, 2022, pp.315.
75 Zhao S J. Journal of Materials Science & Technology, 2020, 44, 133.
76 Dou Y K, Jin K, He X F, et al. Atomic Energy Science and Technology, 2019, 53(10), 1868 (in Chinese).
豆艳坤, 靳柯, 贺新福, 等. 原子能科学技术, 2019, 53(10), 1868.
[1] 刘宇, 张健, 庞小通, 周小杰, 卢先正, 陈小敏, 李佳豪, 彭平. 镧镍系合金对氢化镁组织结构与储氢性能的影响及机理[J]. 材料导报, 2025, 39(8): 24040039-6.
[2] 陈阿青, 梁轻. Nb掺杂二氧化钛纳米管电子结构第一性原理计算[J]. 材料导报, 2025, 39(4): 23100185-6.
[3] 张泽疆, 李新梅, 朱春金, 李航, 杨定力. 纳米TiB2对CoCrFeNiSi高熵合金涂层耐磨与耐蚀性能的影响[J]. 材料导报, 2025, 39(3): 23090210-9.
[4] 宋少龙, 王晓地, 张哲, 任学冲, 栾本利. 高熵合金高周和低周疲劳行为研究进展[J]. 材料导报, 2025, 39(3): 23100148-12.
[5] 薛赞, 晋玺, 毛周朱, 兰爱东, 王大雨, 乔珺威. 热机械处理提高Cr47Ni33Co10Fe10多组元共晶合金力学性能[J]. 材料导报, 2025, 39(3): 23120100-6.
[6] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[7] 陈怀昊, 刘海博, 邓林红. Ti-25%Nb合金β、α″和ω相的力学性能和键合特征的第一性原理研究[J]. 材料导报, 2025, 39(15): 23100055-8.
[8] 韩娟, 龙雨, 徐流杰, 赖伟基, 龙绍檑, 邓澄, 周圣丰, 于振涛, 李卫, 易艳良. 激光熔覆高熵合金涂层的研究进展[J]. 材料导报, 2025, 39(13): 24050222-16.
[9] 蒋旭浩, 刘远超, 李耑, 徐一帆, 刘新昊, 李梓硕. 层状堆叠对α-石墨炔热电输运特性的影响[J]. 材料导报, 2025, 39(12): 24070118-6.
[10] 申笠蒙, 李玺, 张博. 点缺陷对二维锡烯材料结构、电学和磁学性质影响的第一性原理研究[J]. 材料导报, 2025, 39(12): 24050023-6.
[11] 麻相龙, 曹睿, 徐灏, 周宁, 高爽, 徐志伟. CoCrFeNiMn高熵合金中间层热等静压扩散连接钛/铝接头组织和性能[J]. 材料导报, 2025, 39(12): 24060014-7.
[12] 白雪, 文杜林, 王云杰, 苟杰, 苏欣. 三元混晶AlP1-xAsx(x=0,0.125,0.25,0.375,0.5,0.625,0.75,0.875,1)的电子结构和力学性质的第一性原理研究[J]. 材料导报, 2025, 39(12): 23080043-5.
[13] 薛云龙, 田康康, 刘虎林, 伍媛婷, 袁亮, 高中堂. 无钴共晶高熵合金研究进展[J]. 材料导报, 2025, 39(11): 24050218-10.
[14] 蒋旭浩, 刘远超, 李耑, 徐一帆, 李梓硕, 刘新昊. B、N掺杂对α-石墨炔热电输运特性的影响[J]. 材料导报, 2025, 39(10): 24050034-7.
[15] 吴迪, 林方敏, 张洪龙, 宋孟, 杨永, 殷兆良, 章小峰. 合金元素对bcc-Cu/NiAl共析出影响的第一性原理研究[J]. 材料导报, 2024, 38(9): 22070183-6.
[1] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[2] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[3] JIA Zhihong, WENG Yaoyao, DING Lipeng, CHENG Tao, LIU Yingying, LIU Qing. Sn Microalloying for Aluminum Alloys: Strengthening Effects and Mechanisms[J]. Materials Reports, 2017, 31(9): 123 -127 .
[4] WANG Ru, ZHANG Shaokang, WANG Gaoyong. Influence and Mechanism of Mineral Admixtures on Setting and Hardening of Styrene-Butadiene Copolymer/Cement Composite Cementitious Material[J]. Materials Reports, 2017, 31(24): 69 -73 .
[5] DING Yutian, DOU Zhengyi, GAO Yubi, GAO Xin, LI Haifeng, LIU Dexue. In-situ Observation of Solidification Process of GH3625 Superalloy at Different Cooling Rates[J]. Materials Reports, 2017, 31(24): 150 -155 .
[6] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[7] LIU Guoyi, LIU Yuanjun, ZHAO Xiaoming. A Study on Protecting Efficiency to the Radiative Heat of the Outer Fabric for the Fire Proximity Suits[J]. Materials Reports, 2017, 31(22): 116 -120 .
[8] ZHANG Wangxi, WANG Yanzhi, LIANG Baoyan, LI Qiquan, LUO Wei, SUN Changhong, CHENG Xiaozhe, SUN Yuzhou. Review on the Development of Nanodiamonds Used as Functional Materials[J]. Materials Reports, 2018, 32(13): 2183 -2188 .
[9] YANG Fang, ZHANG Long, YU Kun, QI Tianjiao, GUAN Debin. Recent Advances in Humidity Sensitivity of Graphene[J]. Materials Reports, 2018, 32(17): 2940 -2948 .
[10] TIAN Yaqiang, LI Wang, ZHENG Xiaoping, WEI Yingli, SONG Jinying, CHEN Liansheng. Application of Alloy Elements in Quenching and Partitioning Steel:an Overview[J]. Materials Reports, 2019, 33(7): 1109 -1118 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed