Please wait a minute...
材料导报  2025, Vol. 39 Issue (15): 23100055-8    https://doi.org/10.11896/cldb.23100055
  金属与金属基复合材料 |
Ti-25%Nb合金β、α″和ω相的力学性能和键合特征的第一性原理研究
陈怀昊1,2, 刘海博3, 邓林红4,*
1 沙洲职业工学院智能制造学院,江苏 张家港 215600
2 常州大学材料科学与工程学院,江苏 常州 213164
3 浙江大学地球科学学院,杭州 310058
4 常州大学医学与健康工程学院,江苏 常州 213164
First-principles Study on the Mechanical Properties and Bonding Characteristics of β,α″ and ω Phases in Ti-25at%Nb Alloy
CHEN Huaihao1,2, LIU Haibo3, DENG Linhong4,*
1 School of Intelligent Manufacturing, Shazhou Professional Institute of Technology, Zhangjiagang 215600, Jiangsu, China
2 School of Materials Science & Engineering, Changzhou University, Changzhou 213164, Jiangsu, China
3 School of Earth Science, Zhejiang University, Hangzhou 310058, China
4 School of Medical and Health Engineering, Changzhou University, Changzhou 213164, Jiangsu, China
下载:  全 文 ( PDF ) ( 15965KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 基于第一性原理方法计算Ti-25%Nb(原子分数,下同)合金三种相结构(β、α″和ω相)的弹性常数、态密度、电荷密度和Mulliken布居,在此基础上探究Ti-25%Nb合金的力学性能、键合特征及二者内在联系。计算结果表明:α″相的生成可以抑制β向ω相的转变;β、α″和ω相的主要成键类型为金属键,其次还包括共价键和离子键;β相的金属键和离子键强度最高,α″相的共价键强度最高;三种相结构的力学性能主要取决于金属键强度,金属键的增多有利于合金弹性模量的降低;单位原子d电子态密度在费米能级处的数值越高,所对应的晶体结构杨氏模量越小。金属键可以提高延展性,抑制脆性,削弱成键的定向强度,从而降低合金相的强度。本研究揭示了Ti-25%Nb合金在 β→α″、ω亚稳相转变过程中力学性能的变化和键合特征,可为β钛合金的制备和力学性能分析提供一定的理论依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈怀昊
刘海博
邓林红
关键词:  Ti-25%Nb合金  力学性能  键合特征  第一性原理    
Abstract: Based on the first-principles method, the elastic constants, density of states, charge density, and Mulliken population of three phase structures (β, α″ and ω phases) of Ti-25at%Nb alloy were calculated. On this basis, the mechanical properties, bonding characteristics and internal relations of Ti-25at%Nb alloy were explored. The results showed that the formation of α″ phase can inhibit the phase transformation of β→ω. The main bonding types of β, α″ and ω phases are metal bonds, followed by covalent bonds and ionic bonds. The strengths of metal bond and ionic bond in β phase are the highest, and the covalent bond strength of the α″ phase is the highest. The mechanical properties of the three phase structures mainly depend on the strength of the metal bond. The increase of metal bonds is beneficial to the decrease of the elastic modulus. A higher d-electron density of states per atom at Fermi level corresponds to a lower Young's modulus of the crystal structure. Metal bonds can improve ductility, inhibit brittleness, and lower the directional strength of bonds, thereby reducing the strength of the alloy phase. This study provides a theoretical basis for the preparation and mechanical properties analysis of β-type titanium alloys.
Key words:  Ti-25at%Nb alloy    mechanical property    bonding characteristic    first-principles study
出版日期:  2025-08-10      发布日期:  2025-08-13
ZTFLH:  TG146.2  
基金资助: 国家自然科学基金(31670950);江苏高校‘青蓝工程'
通讯作者:  邓林红,教育部长江学者奖励计划特聘教授,常州大学医学与健康工程学院院长、教授、博士研究生导师。长期从事细胞生物力学与生物流变学及其与哮喘等病理生理机制关系的研究。dlh@cczu.edu.cn   
作者简介:  陈怀昊,沙洲职业工学院智能制造学院讲师,常州大学材料科学与工程学院博士研究生,研究方向主要有第一性原理计算、生物医用钛合金、高熵合金。
引用本文:    
陈怀昊, 刘海博, 邓林红. Ti-25%Nb合金β、α″和ω相的力学性能和键合特征的第一性原理研究[J]. 材料导报, 2025, 39(15): 23100055-8.
CHEN Huaihao, LIU Haibo, DENG Linhong. First-principles Study on the Mechanical Properties and Bonding Characteristics of β,α″ and ω Phases in Ti-25at%Nb Alloy. Materials Reports, 2025, 39(15): 23100055-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.23100055  或          https://www.mater-rep.com/CN/Y2025/V39/I15/23100055
1 Wu X D, Yang G J, Ge Peng, et al. Titanium Industry Progress, 2008, 25(5), 6 (in Chinese).
吴晓东, 杨冠军, 葛鹏, 等. 钛工业进展, 2008, 25(5), 6.
2 Moffat D L, Larbalestier D C. Metallurgical and Materials Transactions A, 1988, 19, 1677.
3 Kim H Y, Ikehara Y, Kim J I, et al. Acta Materialia, 2006, 54, 2419.
4 Gutiérrez-Moreno, J J, Guo Y, Georgarakis K, et al. Journal of Alloys & Compounds, 2014, 615, S676.
5 Yao Q, Xing H, Guo W Y, et al. Rare Metal Materials & Engineering, 2009, 38(4), 4 (in Chinese).
姚强, 邢辉, 郭文渊, 等. 稀有金属材料与工程, 2009, 38(4), 4.
6 Xu Y F. Design, preparation and solid-solution aging behavior of a new β-type titanium alloy for biomedical applications. Ph. D. Thesis, Central South University, China, 2012 (in Chinese).
许艳飞. 新型医用β钛合金的设计、制备及其固溶时效行为. 博士学位论文, 中南大学, 2012.
7 Gutiérrez-Moreno J J, Bönisch M, Panagiotopoulos N T, et al. Journal of Alloys & Compounds, 2017, 696, 481.
8 Wu X W. Study on the microstructure control, thermal expansion and mechanical properties of metastable β-type Ti-Nb based alloys. Ph. D. Thesis, Southeast University, China, 2022 (in Chinese).
武祥为. 亚稳β型Ti-Nb基合金微观组织调控及其热膨胀和力学性能的研究. 博士学位论文, 东南大学, 2022.
9 Ikehata H, Nagasako N, Furuta T, et al. Physical Review B, 2004, 70(17), 174113.
10 Wan X, Wu C, Tan C, et al. Rare Metal Materials & Engineering, 2014, 43(3), 553.
11 Mo W. Titanium, Metallurgical Industry Press, China, 2008, pp. 281 (in Chinese).
莫畏. 钛, 冶金工业出版社, 2008, pp. 281.
12 Kim H Y, Hashimoto S, Kim J I, et al. Materials Transactions, 2004, 45(7), 2443.
13 Ma X Q, Han Y, Yu Z T, et al. Rare Metal Materials & Engineering, 2012, 41(9), 4 (in Chinese).
麻西群, 憨勇, 于振涛, 等. 稀有金属材料与工程, 2012, 41(9), 4.
14 Sten H, Mikkel S, Mohnish P, et al. 2D Materials, 2018, 5, 042002.
15 Nye F. Physical properties of crystals, Clarendon Press, UK, 1964, pp. 142.
16 Wu Z J, Zhao E J, Xiang H P, et al. Physical Review B, 2007, 76(5), 054115. 1.
17 Hill R W. Proceedings of the Physical Society, 1952, 65(5), 349.
18 Frantsevich I N, Voronov F F, Bokuta S A. Elastic constants and elastic moduli of metals and insulators handbook, Naukova Dumka Press, USSR, 1983, pp. 60.
19 Pugh S F. Philosophical Magazine, 1954, 45, 823.
20 Li L Y. Intermetallics, 2011, 19, 1275.
21 Tabor D. The hardness of metals, Oxford University Press, UK, 1951, pp. 105.
22 Hou F Q, Li S J, Hao Y L, et al. Scripta Materialia, 2010, 63, 54.
23 Lee C M, Ju C P, Chern Lin J H. Journal of Oral Rehabilitation, 2002, 29(4), 314.
24 Niu H, Niu S, Oganov A R. Journal of Applied Physics, 2019, 125(6), 065105.
25 Tong Y, Bai L, Liang X, et al. Intermetallics, 2020, 126, 106928.
26 Hao Y L, Niinomi M, Kuroda D, et al. Metallurgical & Materials Tran-sactions A, 2002, 33A, 3137.
27 Abdel-Hady M, Hinoshita K. Scripta Materialia, 2006, 55(5), 477.
28 Mu S, Wimmer S, Mankovsky S, et al. Scripta Materialia, 2019, 170, 189.
29 Morinaga M, Saito J I, Morishita M. Journal of Japan Institute of Light Metals, 1992, 42(11), 614.
30 Li Y, Gao Y, Xiao B, et al. Journal of Alloys & Compounds, 2010, 502, 28.
31 Mann J B, Meek T L, Knight E T, et al. Journal of the American Chemical Society, 2000, 122(21), 5132.
32 Xue J X, Zhang R G, Liu Y P, et al. Acta Physica Sinica, 2012, 61(12), 127101 (in Chinese).
薛金祥, 章日光, 刘燕萍, 等. 物理学报, 2012, 61(12), 127101.
33 Ojha A, Sehitoglu H. Shape Memory & Superelasticity, 2016, 2(2), 1.
34 Ge X N, Zhu D C, Feng Z M. 2011, 25(4), 369 (in Chinese).
葛向南, 朱达川, 冯作明. 材料研究学报, 2011, 25(4), 369.
[1] 董洪年, 杨明, 林天一, 陈沛然, 魏婷婷. 针刺密度对碳/碳复合材料力学行为影响的仿真分析[J]. 材料导报, 2025, 39(9): 23120170-6.
[2] 夏益健, 张宇, 张云升, 朱微微, 朱文轩. 磨细凝灰岩制备机制砂混凝土力学性能研究[J]. 材料导报, 2025, 39(9): 24030199-7.
[3] 钱如胜, 叶志波, 张云升, 赵儒泽, 孔德玉, 杨杨, 聂海波. 固碳强化再生粗骨料对其混凝土力学强度及体积稳定性的影响[J]. 材料导报, 2025, 39(9): 24020155-6.
[4] 燕伟, 李驰, 邢渊浩, 高瑜. 循环流化床多元固废粉煤灰基水泥胶砂固碳试验研究[J]. 材料导报, 2025, 39(9): 24010111-7.
[5] 陈港明, 王辉, 黄雪飞. 温轧对低铬FeCrAl合金显微组织及室温和高温力学性能的影响[J]. 材料导报, 2025, 39(9): 24060057-11.
[6] 陈继伟, 朱慧雯, 王海镔, 桑建权, 李艳花, 熊芬, 罗建新. 利用Hofmeister效应一步法制备离子导电耐低温强韧PVA水凝胶[J]. 材料导报, 2025, 39(9): 24050045-7.
[7] 陈永达, 胡智淇, 关岩, 常钧, 陈兵. 羟丙基甲基纤维素与硅烷偶联剂对磷酸镁基钢结构防火涂料性能的影响[J]. 材料导报, 2025, 39(8): 24010194-7.
[8] 雒亿平, 邢美光, 王德法, 易万成, 杨连碧, 薛国斌. 赤铁矿对偏高岭土基地聚物力学性能及反应机理的影响[J]. 材料导报, 2025, 39(8): 24040075-8.
[9] 李琼, 安宝峰, 苏睿, 乔宏霞, 王超群. 废玻璃粉透水混凝土物理性能及复合胶凝体系微观机理研究[J]. 材料导报, 2025, 39(8): 23100186-11.
[10] 刘宇, 张健, 庞小通, 周小杰, 卢先正, 陈小敏, 李佳豪, 彭平. 镧镍系合金对氢化镁组织结构与储氢性能的影响及机理[J]. 材料导报, 2025, 39(8): 24040039-6.
[11] 程焱, 张弦, 苏志诚, 刘静, 吴开明. 具有TRIP效应的先进高强度钢力学性能及腐蚀行为的研究进展[J]. 材料导报, 2025, 39(8): 24020115-8.
[12] 徐焜, 黄子悦, 程云浦, 钱小妹. GNPs改性环氧复合材料等效弹性性能数值预测模型[J]. 材料导报, 2025, 39(8): 24040190-4.
[13] 董硕, 郑立森, 史奉伟, 王来, 刘哲. 钢纤维地聚物再生混凝土力学性能及强度指标换算[J]. 材料导报, 2025, 39(7): 24100219-8.
[14] 谢昭男, 陈军红, 黄西成, 邱勇. 橡胶的热老化力学性能与本构关系研究进展[J]. 材料导报, 2025, 39(7): 23120036-16.
[15] 段明翰, 覃源, 李阳, 耿凯强. 寒冷地区腈纶纤维混凝土力学性能及多层感知器神经网络预测[J]. 材料导报, 2025, 39(6): 23110143-9.
[1] . Effect of Annealing on Crystalline Structure and Low-temperature Toughness of
Polypropylene Random Copolymer Dedicated Pipe Materials
[J]. Materials Reports, 2017, 31(4): 65 -69 .
[2] YAN Xin, HUI Xiaoyan, YAN Congxiang, AI Tao, SU Xinghua. Preparation and Visible-light Photocatalytic Activity of Graphite-like Carbon Nitride Two-dimensional Nanosheets[J]. Materials Reports, 2017, 31(9): 77 -80 .
[3] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[4] WANG Xinyu, ZHEN Siqi, DONG Zhengchao, ZHONG Chonggui. Electrocaloric Effects of Ferroelectric Materials: an Overview[J]. Materials Reports, 2017, 31(19): 13 -18 .
[5] WANG Bin, ZHANG Lele, DU Jinjing, ZHANG Bo, LIANG Lisi, ZHU Jun. Applying Electrothermal Reduction Method to the Preparation of V-Ti-Cr-Fe Alloys Serving as Hydrogen Storage Materials[J]. Materials Reports, 2018, 32(10): 1635 -1638 .
[6] GAO Wei, ZHAO Guangjie. Synergetic Oxidation Modification of Wooden Activated Carbon Fiber with Nitric Acid and Ceric Ammonium Nitrate[J]. Materials Reports, 2018, 32(9): 1507 -1512 .
[7] ZHANG Tiangang,SUN Ronglu,AN Tongda,ZHANG Hongwei. Comparative Study on Microstructure of Single-pass and Multitrack TC4 Laser Cladding Layer on Ti811 Surface[J]. Materials Reports, 2018, 32(12): 1983 -1987 .
[8] WANG Bilei, LI Yongcan, SONG Changjiang. A State-of-the-art Review on Yield Point Elongation Phenomenon of Low Carbon Steel[J]. Materials Reports, 2018, 32(15): 2659 -2665 .
[9] ZHU Yaming, ZHAO Chunlei, LIU Xian, ZHAO Xuefei, GAO Lijuan, CHENG Junxia. Study on the Basic Physical Properties of Toluene Soluble Extracted from Coal Tar Pitch[J]. Materials Reports, 2019, 33(2): 368 -372 .
[10] ZHOU Chao, LI Detian, ZHOU Hui, ZHANG Kaifeng, CAO Shengzhu. Non-evaporable Getter Films for Vacuum Packaging of MEMSDevices: an Overview[J]. Materials Reports, 2019, 33(3): 438 -443 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed