Please wait a minute...
材料导报  2025, Vol. 39 Issue (15): 23070057-8    https://doi.org/10.11896/cldb.23070057
  无机非金属及其复合材料 |
快速修补用高早强高延性混凝土的力学行为
杨家盛1, 邓明科1,*, 张阳玺1, 张敏1, 范洪侃2
1 西安建筑科技大学土木工程学院,西安 710055
2 西安五和土木工程新材料有限公司,西安 710055
Mechanical Properties of High-early-strength High-ductility Concrete for Rapid Repair
YANG Jiasheng1, DENG Mingke1,*, ZHANG Yangxi1, ZHANG Min1, FAN Hongkan2
1 School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
2 Xi'an Wuhe New Civil Engineering Material Co., Ltd., Xi'an 710055, China
下载:  全 文 ( PDF ) ( 28674KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 基于路面修复应用背景,研发了一种低纤维含量高早强高延性混凝土(HES-HDC)。通过试验研究了HES-HDC在不同龄期时的抗压、抗折、单轴拉伸和四点弯曲行为。考虑了不同粗糙度等级对其与既有混凝土界面剪切强度的影响;测量了其耐磨性和抗渗性,并将其与普通混凝土对比。结果表明:在2 h龄期时,HES-HDC抗压强度、抗折强度、抗弯拉强度分别达到29、8和13 MPa,满足开放交通的需求。在受拉伸和弯曲作用时,HES-HDC试验曲线展示出应变强化特征,其28 d拉伸应变保持在2.63%,弹性模量约为19.9 GPa;与PVA纤维增强HES-HDC梁相比,PE纤维增强HES-HDC梁的初始弯曲韧性比和残余弯曲韧性比在2 h龄期时分别提高了15.2%和2.0%,在24 h龄期时分别提高了88.3%和1.1%。HES-HDC与既有混凝土的界面剪切强度随龄期的延长和粗糙度等级的增加显著提高;即使HES-HDC与未凿毛的混凝土黏结,2 h界面剪切强度仍然可达1.25 MPa,满足快速修复的需求。HES-HDC耐磨性满足规范对高速、一级公路面层混凝土的要求,且与普通混凝土相当,但其抗渗性远高于普通混凝土。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨家盛
邓明科
张阳玺
张敏
范洪侃
关键词:  高延性混凝土  早强  修补  材料力学行为  界面剪切强度  耐磨性  抗渗性    
Abstract: Based on the application background of pavement repair, the mechanical properties of low fiber content and high-early-strength high-ductility concrete (HES-HDC) including compressive, flexural, uniaxial tensile, and four-point bending behaviors were investigated. The effect of different roughness grades on the interfacial shear strength between HES-HDC and existing concrete was also considered. In addition, the abrasion resistance and impermeability of HES-HDC were measured and compared with normal concrete. The results show that the compressive strength, flexural strength, and bending tensile strength of HES-HDC at 2 h curing age reach 29 MPa, 8 MPa, and 13 MPa, respectively, meeting the requirements of traffic opening. Under tensile and bending loads, the test curves of HES-HDC exhibit strain-hardening characteristics, with a 28-day tensile strain of 2.63% and an elastic modulus of approximately 19.9 GPa. Compared with PVA fiber-reinforced HES-HDC beams, the initial bending toughness ratio and residual bending toughness ratio of PE fiber-reinforced HES-HDC beams increase by 15.2% and 2.0% at 2 h curing age, respectively, and by 88.3% and 1.1% at 24 h curing age, respectively. The interfacial shear strength between HES-HDC and concrete increases significantly with the increase of age and roughness grades. Even if HES-HDC is bonded to concrete with a smooth surface, the interfacial shear strength at 2 h curing age could still reach 1.25 MPa, satisfying the need of rapid repair. The HES-HDC has comparative abrasion resistance to normal concrete, and which complies with the specifications for high-speed, first-class highway pavement concrete. Specially, its permeability is much higher than that of normal concrete.
Key words:  high-ductility concrete (HDC)    early strength    repair    material mechanical performance    interfacial shear strength    abrasion resis-tance    impermeability
出版日期:  2025-08-10      发布日期:  2025-08-13
ZTFLH:  TU528.58  
基金资助: 国家自然科学基金(51878545);西安市重大科技创新计划项目(20191522415KYPT015JC017)
通讯作者:  邓明科,博士,西安建筑科技大学土木工程学院教授、博士研究生导师,西安建筑科技大学高延性混凝土材料与结构研究所所长。长期从事新材料及新型结构体系等领域的教学与科研工作。dengmingke@126.com   
作者简介:  杨家盛,西安建筑科技大学土木工程学院博士研究生,在邓明科教授的指导下进行研究。目前主要从事高早强高延性水泥基复合材料力学性能研究及结构加固应用研究。
引用本文:    
杨家盛, 邓明科, 张阳玺, 张敏, 范洪侃. 快速修补用高早强高延性混凝土的力学行为[J]. 材料导报, 2025, 39(15): 23070057-8.
YANG Jiasheng, DENG Mingke, ZHANG Yangxi, ZHANG Min, FAN Hongkan. Mechanical Properties of High-early-strength High-ductility Concrete for Rapid Repair. Materials Reports, 2025, 39(15): 23070057-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.23070057  或          https://www.mater-rep.com/CN/Y2025/V39/I15/23070057
1 Du T L, Peng P, Liu Y. Highway Engineering, 2020, 45(3), 4 (in Chinese).
杜天玲, 彭鹏, 刘英. 公路工程, 2020, 45(3), 4.
2 Qian S Z, Li V C, Zhang H, et al. Cement and Concrete Composites, 2013, 35(1), 78.
3 Yang J S, Deng M K, Zhang Y X, et al. Archives of Civil and Mechanical Engineering, 2024, 24(1), 36.
4 Venkiteela G, Klein M, Najm H, et al. International Journal of Concrete Structures and Materials, 2017, 11(3), 435.
5 Wang S X, Li V C. ACI Materials Journal, 2006, 103(2), 97.
6 Li M, Li V C. ACI Materials Journal, 2011, 108(1), 3.
7 Deng H W. Advances in Materials Science and Engineering, 2018, 2018(1), 8159869.
8 Li V C. Restoration of Buildings and Monuments, 2004, 10(2), 163.
9 Li V C. Engineered cementitious composites (ECC):bendable concrete for sustainable and resilient infrastructure, Springer, 2019.
10 Huang B T, Li Q H, Xu S L, et al. Engineering Structures, 2019, 199, 109576.
11 Kunieda M, Rokugo K. Journal of Advanced Concrete Technology, 2006, 4(1), 19.
12 Shoji D, Ogwezi B, Li V C. Construction and Building Materials, 2022, 349, 128710.
13 Lepech M, Li V C. Materials and Structures, 2009, 42(9), 1185.
14 Li V C, Lepech M. In:Transportation research board 83rd annual meeting, Compendium of Papers CD ROM, Washington, D. C. , 2004, pp. 4.
15 Ma H, Qian S Z, Zhang Z G. Construction and Building Materials, 2014, 68, 92.
16 Sahmaran M, Al-Emam M, Yildirim G, et al. Materials and Structures, 2013, 48(5), 1389.
17 Yang J S, Deng M K, Zhang Q Q, et al. Journal of Hunan University (Natural Sciences), 2024, 51(3), 130 (in Chinese).
杨家盛, 邓明科, 张晴晴, 等. 湖南大学学报(自然科学版), 2024 51(3), 130.
18 Yokota H, Rokugo K, Sakata N. High performance fiber reinforced cement composites. Springer Tokyo, Japan, 2008, 2, 761.
19 Tian J, Wu X W, Zheng Y, et al. Construction and Building Materials, 2019, 223, 12.
20 Tian J, Wu X W, Zheng Y, et al. Construction and Building Materials, 2019, 226, 238.
21 Shang X Y, Xu F Z, Yu J T, et al. Journal of Building Engineering, 2021, 44, 103328.
22 Zhang J, Wang Z B, Ju X C. Composites Part B:Engineering, 2013, 50, 224.
23 Yang J S, Deng M K, Wang Y, et al. Journal of Building Engineering, 2024, 89, 109332.
24 Liang L, Zhang X, Liu Q L. Materials Reports, 2023, 37(5), 21070107 (in Chinese).
梁龙, 张鑫, 刘巧玲. 材料导报, 2023, 37(5), 21070107.
25 Guo L P, Chen B, Sun W, et al, Journal of Building Structures, 2018, 39(7), 169 (in Chinese).
郭丽萍, 陈波, 孙伟, 等. 建筑结构学报, 2018, 39(7), 169.
[1] 高峰, 郭策安, 张健. 身管内壁铬钽及其合金涂层研究进展[J]. 材料导报, 2025, 39(7): 24010200-8.
[2] 钟新宇, 赖俊英, 阮少钦, 钱晓倩, 钱匡亮. 复合早强剂对掺石灰石粉砂浆强度和水化作用的影响[J]. 材料导报, 2025, 39(5): 24010244-8.
[3] 张泽疆, 李新梅, 朱春金, 李航, 杨定力. 纳米TiB2对CoCrFeNiSi高熵合金涂层耐磨与耐蚀性能的影响[J]. 材料导报, 2025, 39(3): 23090210-9.
[4] 万福程, 梁继超, 于爱华, 张嘉振, 路新. 钛涂层制备与后处理工艺及应用研究进展[J]. 材料导报, 2025, 39(2): 24010131-9.
[5] 解光瑞, 杨盼盼, 孙吉, 杨阳, 丁红宇, 刘兴光, 张世宏. 30CrNi2MoVA钢等离子体渗氮层表征及其对宏观力学性能的影响[J]. 材料导报, 2025, 39(13): 24050145-8.
[6] 顾建, 刘敬华, 王秀龙, 刘胜春, 司佳钧, 王欣欣. Mg含量对粉末渗锌层组织、耐磨性和耐蚀性的影响[J]. 材料导报, 2025, 39(12): 24040189-7.
[7] 苏悦, 闫楠, 白晓宇, 付林, 张启军, 梁斌, 王保栋, 王立彬, 张英杰, 张安琪. 预拌流态固化土的工程特性研究进展及应用[J]. 材料导报, 2024, 38(9): 23070212-7.
[8] 申爱琴, 陈荣伟, 郭寅川, 范建航, 戴晓倩, 丑涛. 季冻区纳米SiO2改性SAP路面混凝土的耐磨性[J]. 材料导报, 2024, 38(7): 23010093-6.
[9] 杨淑雁, 徐盼盼, 宋俊杰, 陈小龙. 基于离差最大化-灰色关联的修补混凝土配合比评价[J]. 材料导报, 2024, 38(6): 22040151-7.
[10] 吕炎, 白二雷, 王志航, 夏伟. 低温养护对环氧树脂基砂浆早期性能的影响及机理[J]. 材料导报, 2024, 38(5): 23080222-6.
[11] 叶梦煊, 谷雷雷, 张梅, 王倩倩. 混凝土表面喷涂类有机无机杂化抗碳化剂制备及性能[J]. 材料导报, 2024, 38(21): 23060104-7.
[12] 张雷, 龙伟民, 樊志斌, 都东, 刘大双, 孙志鹏, 李宇佳, 尚勇. CuTi对Ti-6Al-4V钛合金表面金刚石/AlSi复合钎涂层组织与耐磨性能的影响[J]. 材料导报, 2024, 38(21): 23080114-4.
[13] 高吉昌, 门秀花, 姜帅, 付秀丽, 蒋振峰, 李艳. 高铬铸铁叶片堆焊工艺研究进展[J]. 材料导报, 2024, 38(17): 23050109-9.
[14] 李伟, 谢剑, 佟成龙. 玄武岩微筋对磷酸镁修补砂浆弯曲性能的增强增韧效应研究[J]. 材料导报, 2024, 38(17): 23120021-9.
[15] 王婷, 胡斌, 王文琴, 王非凡. 微弧火花沉积Zr基非晶涂层的组织及性能[J]. 材料导报, 2024, 38(16): 22090308-6.
[1] Pei HE, Weizhi YAO, Jianming LYU, Bo GAO, Xianrong LI. Radiation Resistance Design and Nanoscale Second-phase Particles Characterization for ODS Steels: a Review[J]. Materials Reports, 2018, 32(1): 34 -40 .
[2] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
[3] YANG Xiaojie, DONG Binghai, CHEN Fengxiang, WAN Li, ZHAO Li, WANG Shimin. One-dimensional TiO2 Photoanodes for Dye-sensitized Solar Cells: Fabrication and Applications[J]. Materials Reports, 2017, 31(17): 138 -145 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] ZHU Lijuan, WANG Min, GU Zhengwei, HE Lingling. Research on Stretch Bending Forming of Stainless Steel Curved Beam[J]. Materials Reports, 2017, 31(24): 179 -181 .
[6] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] FU Yu, HE Junbao, ZHANG Ping, LENG Yumin, MA Benyuan, LI Jiyan. Single Crystal Growth and Physical Properties of Layered Transitional Metal Bismuthide BaAg2-δBi2[J]. Materials Reports, 2018, 32(12): 2043 -2046 .
[9] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[10] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed