Please wait a minute...
材料导报  2024, Vol. 38 Issue (21): 23060104-7    https://doi.org/10.11896/cldb.23060104
  无机非金属及其复合材料 |
混凝土表面喷涂类有机无机杂化抗碳化剂制备及性能
叶梦煊1, 谷雷雷2, 张梅2, 王倩倩1,*
1 南京工业大学材料科学与工程学院,南京 211816
2 中交一公局海威工程建设有限公司,北京 101119
Preparation and Properties of Organic-Inorganic Hybrid Anti-carbonation Agent for Spraying Concrete Surface
YE Mengxuan1, GU Leilei2, ZHANG Mei2, WANG Qianqian1,*
1 College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China
2 Haiwei Engineering Construction Co., Ltd. of FHEC of CCCC, Beijing 101119, China
下载:  全 文 ( PDF ) ( 8497KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为提升混凝土的抗碳化能力,延长混凝土的使用寿命,本工作制备有机无机杂化抗碳化剂,研究其对砂浆力学性能、抗碳化性能和抗渗性能的影响,并进一步对有机无机杂化抗碳化剂与水泥石之间相互作用机理进行分析。结果表明:当有机无机杂化抗碳化剂中活性组分质量分数为1.2%时,喷涂该抗碳化剂的水泥净浆截面碳化面积比未喷涂组降低33.6%,吸水率比未喷涂组降低23.7%,总孔隙率从10.56%降为7.17%,喷涂组的渗透高度仅为空白组的58.6%。此外,喷涂该抗碳化剂后,试块的7 d抗压强度比未喷涂组提高6.1%。该配比下水泥净浆试块的X射线衍射、扫描电镜以及孔结构表征表明,有机无机杂化抗碳化剂的活性物质可以渗透进试块内部与水泥基材中氢氧化钙等发生反应,生成不溶性结晶物质填充孔隙与裂缝,并且提升水化硅酸钙的硅钙比和结晶性,从而提升混凝土的抗碳化能力及抗渗性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
叶梦煊
谷雷雷
张梅
王倩倩
关键词:  有机无机杂化  渗透结晶  抗碳化  抗渗性    
Abstract: In order to improve the carbonation resistance and prolong the service life of concrete, this study prepared an organic-inorganic hybridanti-carbonation agent (OCCA) and investigated its effect on mechanical properties, anti-carbonation properties and impermeability of mortar. Furthermore, the interaction mechanism between OCCA and hardened cement pastes was analyzed. The results show that when the mass fraction of the reactive component of the self-designed OCCA is 1.2%, the carbonation area can be reduced by 33.6% compared with the blank group, the water absorption rate decreased by 23.7%, at the same time, the total porosity decreased from 10.56% to 7.17%,and the penetration height of the spray group is 58.6% of the blank group. Moreover, the 7-day compressive strength of the blocks coated with the OCCA increased by 6.1% compared to the blank group. At this ratio, the XRD and SEM analyses of the cement paste block reveal that the reactive components of OCCA can effectively infiltrate the cement paste and interact with the calcium hydroxide present in the concrete. This reaction gives rise to an insoluble crystalline substance that fills up the pores and cracks, so as to improve the carbonation resistance, water-resistance and impermeability of concrete.
Key words:  organic-inorganic hybridization    permeable crystallization    anti-carbonation    water impermeability
出版日期:  2024-11-10      发布日期:  2024-11-11
ZTFLH:  TU528  
基金资助: 国家自然科学基金(52072171)
通讯作者:  *王倩倩,南京工业大学材料科学与工程学院副教授、硕士研究生导师。2015年于南京工业大学博士毕业。目前主要从事低碳胶凝材料、冶炼渣资源化利用、材料多尺度计算模拟和防水材料等方面的研究工作。在Cement and Concrete Research、Applied Surface Science、Corrosion Science、Construction and Building Materials和Journal of Physical Chemistry等学术期刊上发表学术论文多篇。qqwang@njtech.edu.cn   
作者简介:  叶梦煊,2021年6月于蚌埠学院获得工学学士学位。现为南京工业大学材料科学与工程学院硕士研究生,在王倩倩副教授的指导下进行研究。目前主要研究领域为水泥表面处理材料。
引用本文:    
叶梦煊, 谷雷雷, 张梅, 王倩倩. 混凝土表面喷涂类有机无机杂化抗碳化剂制备及性能[J]. 材料导报, 2024, 38(21): 23060104-7.
YE Mengxuan, GU Leilei, ZHANG Mei, WANG Qianqian. Preparation and Properties of Organic-Inorganic Hybrid Anti-carbonation Agent for Spraying Concrete Surface. Materials Reports, 2024, 38(21): 23060104-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23060104  或          http://www.mater-rep.com/CN/Y2024/V38/I21/23060104
1 Xu Z, Zhang Z, Huang J, et al. Construction and Building Materials, 2022, 346, 128399.
2 Jerga J. Construction and Building Materials, 2004, 18(9), 645.
3 Pan Z, Chen A, Ma R, et al. Construction and Building Materials, 2018, 192, 253.
4 Xu G, Bao H, Wang Q, et al. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2015, 43(9), 105 (in Chinese).
徐港,鲍浩, 王青, 等. 华中科技大学学报(自然科学版), 2015, 43(9), 105.
5 Omikrine Metalssl O, Aït-Mokhtar A, Turcry P, et al. Construction and Building Materials, 2012, 34, 218.
6 Otieno M, Ikotun J, Ballim Y. Construction and Building Materials, 2019, 198, 172.
7 Šavija B, Lukovic M. Construction and Building Materials, 2016, 117, 285.
8 Niu D T. Durability and life forecast of reinforced concrete structure, Science Press, China, 2003, pp. 12 (in Chinese).
牛荻涛.混凝土结构耐久性与寿命预测, 科学出版社, 2003, pp. 12.
9 Jang Q, Yu C, Yu X. New Building Materials, 2020, 47(8), 56 (in Chinese).
姜骞, 于诚, 余鑫.新型建筑材料, 2020, 47(8), 56.
10 Ayub T, Khan S U, Memon F A. The Scientific World Journal, 2014, 2014, 875082.
11 Medeiros M H F, Helene P. Construction and Building Materials, 2009, 23(3), 1476.
12 Wei Y, Chen P, Zhang G L, et al. Bulletin of the Chinese Ceramic Society, 2023, 42(1), 85 (in Chinese).
魏宇, 陈庞, 张桂林, 等. 硅酸盐通报, 2023, 42(1), 85.
13 Li G, Lei M, Yang P, et al. Journal of Xuzhou Institute of Technology (Natural Sciences Edition), 2013, 28(2), 62 (in Chinese).
李果, 雷明, 杨璞, 等. 徐州工程学院学报(自然科学版), 2013, 28(2), 62.
14 Perrin F X, Merlatti C, Aragon E, et al. Progress in Organic Coatings, 2009, 64(4), 466.
15 Jia L, Shi C, Pan X, et al. Cement and Concrete Composites, 2016, 67, 85.
16 Li C Z, Niu Z S, Wu H H, et al. Materials Reports, 2021, 35(S1), 216 (in Chinese).
李崇智, 牛振山, 吴慧华, 等. 材料导报, 2021, 35(S1), 216.
17 Zhao Y, Wang J, Zhou J, et al. Materials Reports, 2023, 37(6), 21100243 (in Chinese).
赵毅, 王佳, 周娇, 等. 材料导报, 2023, 37(6),21100243.
18 Zhu H G,Hou J L, Shi J, et al. Materials Reports, 2022, 36(16), 21030218(in Chinese).
朱红光, 侯金良, 石晶,等. 材料导报, 2022, 36(16), 21030218.
19 Yang H T, Yu J J. New Building Materials, 2019, 46(5), 131 (in Chinese).
杨洪涛, 余建军.新型建筑材料, 2019, 46(5), 131.
20 Gao Z N, Jiang X B, Guo K. Journal of Beijing University of Chemical Technology (Natural Science Edition), 2012, 39(2), 7 (in Chinese).
高正楠, 江小波, 郭锴. 北京化工大学学报(自然科学版), 2012, 39(2), 7.
21 Yang Z J, Ma C Y, Wu X X, et al. Oilfield Chemistry, 2016, 33(1), 14 (in Chinese).
杨振杰, 马成云, 武星星, 等. 油田化学, 2016, 33(1), 14.
22 Song Y, Dai G, Zhao L, et al. Construction and Building Materials, 2020, 247, 118527.
23 Sinsiri T, Chindaprasirt P, Jaturapitakkul C. International Journal of Minerals, Metallurgy, and Materials, 2010, 17(6), 683.
24 Zou X T, Wu Q S, Guang J M, et al. Materials Reports, 2016, 30(10), 126 (in Chinese).
邹小童, 吴其胜, 光鉴淼, 等. 材料导报, 2016, 30(10), 126.
[1] 苏悦, 闫楠, 白晓宇, 付林, 张启军, 梁斌, 王保栋, 王立彬, 张英杰, 张安琪. 预拌流态固化土的工程特性研究进展及应用[J]. 材料导报, 2024, 38(9): 23070212-7.
[2] 董健苗, 何其, 周铭, 王振宇, 庄佳桥, 邹明璇, 李万金. 石墨烯水泥砂浆抗碳化试验及预测模型分析[J]. 材料导报, 2024, 38(5): 22070184-6.
[3] 赵登婕, 李康宁, 胡李纳, 闫彤, 杨艳坤, 郝阳, 张晨曦, 郝玉英. 氧化锡电子传输层在正置钙钛矿太阳能电池中的研究进展[J]. 材料导报, 2024, 38(21): 23040102-11.
[4] 张立卿, 余家乐, 王云洋, 韩宝国, 陈梦成, 许开成. 渗透结晶水泥基复合材料研究综述[J]. 材料导报, 2024, 38(13): 22100014-16.
[5] 王伟, 霍建勋, 曾鲁平, 刘伟, 王育江. 单层衬砌喷射混凝土层间力学特性与界面抗渗性能研究[J]. 材料导报, 2023, 37(15): 22010218-7.
[6] 王鹏. 机场道面混凝土性能提升研究[J]. 材料导报, 2022, 36(Z1): 22040083-4.
[7] 李崇智, 王梦宇, 牛振山. 渗透结晶型表面防护剂对混凝土耐久性的影响[J]. 材料导报, 2021, 35(Z1): 247-250.
[8] 田雷, 邱流潮. (超)疏水水泥基材料的研究进展[J]. 材料导报, 2021, 35(19): 19070-19080.
[9] 李崇智, 吴慧华, 牛振山, 曹莹莹. 水泥基渗透结晶防水母料的配制与应用性能[J]. 材料导报, 2020, 34(Z2): 261-264.
[10] 王梦宇, 李崇智, 牛振山. 渗透结晶型防护剂对混凝土防水抗蚀性能的影响[J]. 材料导报, 2020, 34(Z1): 185-188.
[11] 李太行, 戚承志, 王晓娇, 周理安. 再生建筑骨料添加对城墙土体抗渗性的影响[J]. 材料导报, 2020, 34(Z1): 220-223.
[12] 王德辉, 史才军, 贾煌飞. 石灰石粉和含铝相辅助性胶凝材料的协同作用对混凝土抗碳化性能的影响[J]. 材料导报, 2018, 32(17): 2986-2991.
[13] 马宏强, 易成, 朱红光, 董作超, 陈宏宇, 王佳欣, 李德毅. 煤矸石集料混凝土抗压强度及耐久性能[J]. 《材料导报》期刊社, 2018, 32(14): 2390-2395.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed