Please wait a minute...
材料导报  2025, Vol. 39 Issue (17): 24080053-8    https://doi.org/10.11896/cldb.24080053
  金属与金属基复合材料 |
不同温度退火热处理对Al-Mg-Ga-Sn可溶铝合金塑性及组织的影响研究
马宁1, 朱建锋1,*, 常柯2, 秦宇星1, 毛勇3, 马文宗3
1 陕西科技大学材料科学与工程学院,西安 710021
2 西安汉唐分析检测有限公司,西安 710016
3 长庆石油勘探局有限公司机械制造总厂,西安 710201
Study on the Influence of Annealing at Different Temperatures on the Plasticity and Microstructure of Al-Mg-Ga-Sn Soluble Aluminum Alloy
MA Ning1, ZHU Jianfeng1,*, CHANG Ke2, QIN Yuxing1, MAO Yong3, MA Wenzong3
1 School of Materials Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
2 Xi'an Hantang Analysis and Testing Co., Ltd., Xi'an 710016, China
3 Machinery Manufacturing Plant of Changqing Petroleum Exploration Bureau Co., Ltd., Xi'an 710201, China
下载:  全 文 ( PDF ) ( 64233KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 由可溶合金材料制备的材料,因其优异的力学性能且可在受力完成后实现可控溶解,在开采低渗透非常规油气领域具有广泛应用;同时,由于能产生氢气,在制氢储氢方面也有广阔的发展前景。然而由于使用环境较为复杂,常为水力分段压裂的地下深几千米处,可溶合金常因塑性太差而发生断裂,导致失效。如何得到高塑性的可溶合金,避免其断裂失效是其在实际应用中必须解决的问题。常规的可溶铸造合金由于有缺陷,导致其经常出现沿缺陷断裂。有鉴于此,本工作采用高温熔炼法制备Al-Mg-Ga-Sn可溶铝合金材料,研究热处理对可溶铝合金塑性的影响。采用不同温度的退火热处理工艺进一步改善可溶铝合金组织和塑性,同时研究可溶铝合金在水中的溶解机理。分别采用扫描电子显微镜(SEM)、能谱仪(EDS)、X射线衍射仪(XRD)等分析手段进行微观形貌分析及表征。采用失重法、电化学工作站和显微硬度计等分析手段进行溶解性能、电化学性能、塑性和硬度等性能分析。结果表明,当退火温度为470 ℃,升温过程2.0 h,保温12.0 h后,空冷处理的热处理工艺最适用于Al-Mg-Ga-Sn可溶铝合金材料。此外,该工艺操作简便,同时也是一种潜在的适用于可溶合金的普适技术。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马宁
朱建锋
常柯
秦宇星
毛勇
马文宗
关键词:  可溶合金  热处理  塑性  组织结构    
Abstract: Due to its exceptional mechanical properties and the ability of controllable dissolution upon stress application, material crafted from soluble alloys shows highly valuable value for the extraction of low-permeability, unconventional oil and gas reserves. Moreover, its capacity to produce hydrogen gas is promising for advancements in hydrogen generation and energy storage technologies. However, challenging service conditions, typically in the deep subsurface during hydraulic fracturing operations, can result in alloy failure owing to inadequate plasticity and eventual fracture. Therefore, enhancing the plasticity of soluble alloys to prevent fracture-induced failure is critical for their effective utilization. Conventional soluble cast alloys are prone to defects that initiate fractures, which highlights the need for improvement. In this study, a high-temperature melting technique was employed to produce Al-Mg-Ga-Sn soluble aluminum alloys, and the impact of heat treatment on their plasticity was examined. By subjecting the alloys to a range of annealing temperatures and heat treatment processes, the microstructure and plasticity was refined and its dissolution mechanism in water was also explored. SEM, EDS, XRD, and other analytical methods were used for detailed microscopic morphology analysis and characterization. Furthermore, the dissolution performance, electrochemical behavior, plasticity, and hardness were assessed by using the weight loss method, electrochemical workstation, and microhardness tester. The findings reveal that annealing at 470 ℃ for 2 h during the heating phase, followed by a 12 h soak, and subsequent air cooling, is optimal for the Al-Mg-Ga-Sn soluble aluminum alloy. This heat treatment process is not only effective, but also simple, suggesting its potential as a broadly applicable technique for the treatment of soluble alloys.
Key words:  soluble alloy    heat treatment    plasticity    microstructure
发布日期:  2025-08-28
ZTFLH:  TG15  
基金资助: 国家自然科学基金(52272020;51972200)
通讯作者:  *朱建锋,陕西科技大学材料科学与工程学院(文物保护科学与技术学院)教授、博士研究生导师。目前主要从事材料绿色制备、文化遗产保护材料等方面的研究工作。zhujf@sust.edu.cn   
作者简介:  马宁,陕西科技大学材料科学与工程学院博士研究生,在朱建锋教授的指导下进行研究。目前主要研究领域为可溶合金。
引用本文:    
马宁, 朱建锋, 常柯, 秦宇星, 毛勇, 马文宗. 不同温度退火热处理对Al-Mg-Ga-Sn可溶铝合金塑性及组织的影响研究[J]. 材料导报, 2025, 39(17): 24080053-8.
MA Ning, ZHU Jianfeng, CHANG Ke, QIN Yuxing, MAO Yong, MA Wenzong. Study on the Influence of Annealing at Different Temperatures on the Plasticity and Microstructure of Al-Mg-Ga-Sn Soluble Aluminum Alloy. Materials Reports, 2025, 39(17): 24080053-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24080053  或          https://www.mater-rep.com/CN/Y2025/V39/I17/24080053
1 Li D, Zhu P, Wang P, et al. Heat Treatment of Metals, 2021, 46(10), 163(in Chinese).
李大林, 朱鹏程, 王萍, 等. 金属热处理, 2021, 46(10), 163.
2 Zhao T, Guo E, Feng Y, et al. Chinese Journal of Materials Research, 2019, 33(8), 588(in Chinese).
赵天佑, 郭二军, 冯义成, 等. 材料研究学报, 2019, 33(8), 588.
3 Mo D, He G, Hu Z, et al. Acta Metallurgica Sinica, 2010, 46(2), 184(in Chinese).
莫德锋, 何国求, 胡正飞, 等. 金属学报, 2010, 46(2), 184.
4 Stavroulakis P, Toulfatzis A, Vazdirvanidis A, et al. Materials Science and Technology, 2020, 36(8), 939.
5 Zhou S, Peng P, Xu Y, et al. Materials Science and Engineering:A, 2022, 832, 142366.
6 Peng P, Yan X, Zheng W, et al. Materials Science and Engineering:A, 2022, 857, 144039.
7 Vlek M, Luká F, Kudrnová H, et al. Materials, 2017, 10(1), 55.
8 Wang X, Guo M, Cao L, et al. Materials Science and Engineering:A, 2015, 621, 8.
9 Castany P, Diologent F, Rossoll A, et al. Materials Science and Engineering:A, 2013, 559, 558.
10 Liu W C, Li Z, Man C S. Materials Science and Engineering:A, 2008, 478(1), 173.
11 Huang R, Yang H, Zheng S, et al. Materials & Design, 2023, 235, 112395.
12 Zhao P H, Wu X L, Gao K Y, et al. Materials Science Forum, 2020, 993, 123.
13 Huang R, Yang H, Wan L, et al. Advanced Engineering Materials, 2023, 25(12), 2201854.
14 Du B D, Liu J, Wang X, et al. Chinese Journal of Materials Research, 2021, 35(1), 25(in Chinese).
杜邦登, 刘军, 王晓婉, 等. 材料研究学报, 2021, 35(1), 25.
15 Zhang C, Cai Z, Wang R, et al. Journal of the Electrochemical Society, 2021, 168(3), 030519.
16 Miracle D B, Wilks G B, Dahlman A G, et al. Acta Materialia, 2011, 59(20), 7840.
17 Hui W, Sun L, Zhou Y, et al. Intermetallics, 2022, 144, 107501.
[1] 张鹏, 李兵, 徐飞越, 汪锐杰, 王敏. 预处理条件对QP980钢组织及塑性失稳行为的影响[J]. 材料导报, 2025, 39(8): 24020130-6.
[2] 李欢, 张健, 伍世英, 刘千喜. 焊头形状对Cu/Al大功率超声焊接温度场及塑性变形的影响[J]. 材料导报, 2025, 39(6): 24010115-6.
[3] 王伟, 庞少雄, 丁士杰, 杨昊天, 于呈呈. 向心关节轴承包围式单边挤压成形工艺数值模拟与实验验证[J]. 材料导报, 2025, 39(4): 23100250-7.
[4] 张凌凯, 丁旭升, 樊培培. 新疆北部重塑性黄土的力学特性规律及微观机制试验研究[J]. 材料导报, 2025, 39(3): 23090060-10.
[5] 卞宏友, 柳金生, 刘伟军, 张广泰, 姚佳彬, 邢飞. 激光沉积修复GH738/K417G合金时效热处理组织性能分析[J]. 材料导报, 2025, 39(3): 23110265-6.
[6] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[7] 敬彬, 胡文军, 陶俊林. Taylor撞击实验及其应用研究进展[J]. 材料导报, 2025, 39(2): 23100210-10.
[8] 付同宇, 曹燕光, 李昭东, 魏坤霞, 张建卫, 谭峰亮. 基于超声法对不同状态高强度结构钢板残余应力研究[J]. 材料导报, 2025, 39(17): 24060139-7.
[9] 孙威杰, 刘帅, 黄玖龙, 李冬冬, 袁泽博, 张岩, 冯运莉. 碳含量对孪晶诱发塑性钢高周疲劳行为的影响[J]. 材料导报, 2025, 39(16): 24060167-7.
[10] 李灏, 刘宇伦, 刘金龙, 陈良贤, 李成明, 魏俊俊. 真空热处理对金刚石基TaxN薄膜微观结构及电学性能的影响[J]. 材料导报, 2025, 39(15): 24060003-5.
[11] 张鹏德, 李广, 刘玉鹏, 石玗. 热处理对热丝激光增材制造17-4PH不锈钢组织性能的影响[J]. 材料导报, 2025, 39(15): 24080123-7.
[12] 权文立, 黄炜, 唐达, 孙文博, 苗欣蔚, 侯莉娜. 蒸压砂加气混凝土损伤本构模型研究[J]. 材料导报, 2025, 39(14): 24050166-6.
[13] 冯殿远, 刘诗超, 王善林, 李欢欢, 洪敏, 涂文斌. 热处理对30CrMnSiNi2A钢电子束焊接头组织和性能的影响[J]. 材料导报, 2025, 39(14): 24040172-7.
[14] 陈作宁, 师仲然, 胡骞, 王益起, 罗小兵. 渗碳体形态提高船体结构钢塑性机理研究[J]. 材料导报, 2025, 39(14): 24050191-9.
[15] 秦鹏飞, 郭艳芹, 高瑞源. 应力耦合效应下砂层劈裂注浆力学机制分析[J]. 材料导报, 2025, 39(13): 24050091-5.
[1] . Effect of Annealing on Crystalline Structure and Low-temperature Toughness of
Polypropylene Random Copolymer Dedicated Pipe Materials
[J]. Materials Reports, 2017, 31(4): 65 -69 .
[2] YAN Xin, HUI Xiaoyan, YAN Congxiang, AI Tao, SU Xinghua. Preparation and Visible-light Photocatalytic Activity of Graphite-like Carbon Nitride Two-dimensional Nanosheets[J]. Materials Reports, 2017, 31(9): 77 -80 .
[3] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[4] WANG Xinyu, ZHEN Siqi, DONG Zhengchao, ZHONG Chonggui. Electrocaloric Effects of Ferroelectric Materials: an Overview[J]. Materials Reports, 2017, 31(19): 13 -18 .
[5] WANG Bin, ZHANG Lele, DU Jinjing, ZHANG Bo, LIANG Lisi, ZHU Jun. Applying Electrothermal Reduction Method to the Preparation of V-Ti-Cr-Fe Alloys Serving as Hydrogen Storage Materials[J]. Materials Reports, 2018, 32(10): 1635 -1638 .
[6] GAO Wei, ZHAO Guangjie. Synergetic Oxidation Modification of Wooden Activated Carbon Fiber with Nitric Acid and Ceric Ammonium Nitrate[J]. Materials Reports, 2018, 32(9): 1507 -1512 .
[7] ZHANG Tiangang,SUN Ronglu,AN Tongda,ZHANG Hongwei. Comparative Study on Microstructure of Single-pass and Multitrack TC4 Laser Cladding Layer on Ti811 Surface[J]. Materials Reports, 2018, 32(12): 1983 -1987 .
[8] WANG Bilei, LI Yongcan, SONG Changjiang. A State-of-the-art Review on Yield Point Elongation Phenomenon of Low Carbon Steel[J]. Materials Reports, 2018, 32(15): 2659 -2665 .
[9] ZHU Yaming, ZHAO Chunlei, LIU Xian, ZHAO Xuefei, GAO Lijuan, CHENG Junxia. Study on the Basic Physical Properties of Toluene Soluble Extracted from Coal Tar Pitch[J]. Materials Reports, 2019, 33(2): 368 -372 .
[10] ZHOU Chao, LI Detian, ZHOU Hui, ZHANG Kaifeng, CAO Shengzhu. Non-evaporable Getter Films for Vacuum Packaging of MEMSDevices: an Overview[J]. Materials Reports, 2019, 33(3): 438 -443 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed