Please wait a minute...
材料导报  2025, Vol. 39 Issue (17): 24070179-8    https://doi.org/10.11896/cldb.24070179
  高分子与聚合物基复合材料 |
FRP筋相关因素对粘结性能的影响综述
王晓龙, 商怀帅*, 陆兆虎, 肖振浩, 徐少辉
青岛理工大学土木工程学院,山东 青岛 266033
A Review on the Bonding Performance of FRP Bars to Concrete: Mechanisms,Testing Methods,and Influencing Factors
WANG Xiaolong, SHANG Huaishuai*, LU Zhaohu, XIAO Zhenhao, XU Shaohui
School of Civil Engineering, Qingdao University of Technology, Qingdao 266033, Shandong, China
下载:  全 文 ( PDF ) ( 11981KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 近年来,纤维增强聚合物(FRP)筋作为传统钢筋的替代品,在混凝土结构中的应用越来越广泛。FRP筋与混凝土之间的粘结性能直接影响到结构的整体性能和耐久性,因此对粘结行为的深入研究具有重要意义。本研究综述了FRP筋与混凝土的粘结机理、破坏模式及影响粘结性能的关键因素。首先,详细阐述了化学胶着力、摩擦力和机械咬合力在不同条件下对粘结性能的作用机制。其次,分析了FRP筋的纤维类型、弹性模量、粘结长度、筋材直径、表面特性及浇筑位置等因素对粘结强度的影响,并总结了相关实验研究结果。研究表明,通过优化这些因素,能够显著提升FRP筋的粘结性能。尽管已有研究取得了显著进展,但在长期耐久性和复杂受力状态下的粘结行为方面仍存在研究空白。本文为未来的研究方向提供了指导,旨在推动FRP筋在土木工程中的广泛应用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王晓龙
商怀帅
陆兆虎
肖振浩
徐少辉
关键词:  纤维增强聚合物(FRP)筋  混凝土  粘结性能  粘结机理  性能预测  破坏形态    
Abstract: In recent years, fiber-reinforced polymer (FRP) bars have increasingly been used as alternatives to traditional steel reinforcement in concrete structures. The bond performance between FRP bars and concrete directly impacts the overall structural performance and durability, making an in-depth study of bond behavior is crucial. This paper reviews the bonding mechanisms, failure modes, and key factors affecting the bond performance of FRP bars to concrete. First, details the roles of chemical adhesion, frictional resistance, and mechanical interlocking under various conditions in ensuring bond performance. Next, analyzes the effects of factors such as fiber type, modulus of elasticity, bond length, bar diameter, surface characteristics, and casting position on bond strength, summarizing relevant experimental findings. The research indicates that optimizing these factors can significantly enhance the bond performance of FRP bars. Despite substantial progress in the field, gaps remain in the understanding of long-term durability and bond behavior under complex loading conditions. This review provides guidance for future research directions, aiming to promote the widespread application of FRP bars in civil engineering.
Key words:  fiber-reinforced polymer (FRP) bars    concrete    bond performance    bond mechanisms    performance prediction    failure modes
发布日期:  2025-08-28
ZTFLH:  TU599  
基金资助: 国家自然科学基金(52378245);山东省自然科学基金重大基础研究项目(ZR2022ZD33);青岛市科技惠民计划项目(23-2-8-cspz-9-nsh)
通讯作者:  *商怀帅,博士,青岛理工大学土木工程学院教授、博士研究生导师。目前主要从事新型土木工程材料及结构研发、钢筋混凝土材料耐久性能等方面的研究。nx4010@163.com   
作者简介:  王晓龙,青岛理工大学土木工程学院硕士研究生,在商怀帅教授的指导下进行研究。目前主要研究领域为海水海砂混凝土与FRP筋结构的应用。
引用本文:    
王晓龙, 商怀帅, 陆兆虎, 肖振浩, 徐少辉. FRP筋相关因素对粘结性能的影响综述[J]. 材料导报, 2025, 39(17): 24070179-8.
WANG Xiaolong, SHANG Huaishuai, LU Zhaohu, XIAO Zhenhao, XU Shaohui. A Review on the Bonding Performance of FRP Bars to Concrete: Mechanisms,Testing Methods,and Influencing Factors. Materials Reports, 2025, 39(17): 24070179-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24070179  或          https://www.mater-rep.com/CN/Y2025/V39/I17/24070179
1 Angst U, Isgor O, Hansson C M, et al. Applied Physics Reviews, 2022, 9, 011321.
2 Rodrigues R, Gaboreau S, Gance J, et al. Construction and Building Materials, 2021, 269, 121240.
3 Tian Y, Zhang G, Ye H, et al. Construction and Building Materials, 2023, 369, 130504.
4 Fornasari G, Capozzoli L, Rizzo E. Remote Sensing, 2023, 2206, 18.
5 Almusallam A, Khan F, Maslehuddin M. Materials and Structures, 2002, 35, 487.
6 Goyal A, Pouya H, Ganjian E, et al. Arabian Journal for Science and Engineering, 2018, 43(10), 5035.
7 Yan F, Lin Z, Yang M. Composites Part B, 2016, 98, 56.
8 Hu X, Xiao J, Zhang K, et al. Journal of Building Engineering, 2022, 51, 104294.
9 Amran Y H, Alyousef R, Rashid R, et al. Structures, 2018, 16, 208.
10 Benmokrane B, Hassan M, Robert M, et al. Journal of Composites for Construction, 2020, 24, 04020010.
11 Liu T, Liu X, Feng P. Composites Part B, 2020, 191, 107958.
12 Hong Y, Hou X, Zhu Y. Highlights in Science, Engineering and Technology, 2022, 18, 222.
13 Luck J, Bazli M, Rajabipour A. Fibers, 2022, 10, 8.
14 Zemour N, Asadian A, Ahmed E, et al. Construction and Building Materials, 2018, 189, 869.
15 Zhou Y, Wang X, Sui L, et al. Composite Structures, 2018, 206, 11.
16 Xiao J, Li J, Zha Q. Construction and Building Materials, 2004, 18, 745.
17 Niu H, Wu Z. Journal of Materials in Civil Engineering, 2006, 18(5), 723.
18 Bakis C, Uppuluri V, Nanni A, et al. Composites Science and Technology, 1998, 58, 1307.
19 Imjai T, Guadagnini M, Pilakoutas K. Journal of Materials in Civil Engineering, 2017, 29, 04017024.
20 Wu Y, Yan J H, Zhou Y W, et al. ACI Structural Journal, 2010, 107, 451.
21 Yun Y, Hao Z. In:Proceedings of the 5th international conference on advanced design and manufacturing engineering. Atlantis Press, 2015, pp. 1196.
22 Lee J, Lopez M. Construction and Building Materials, 2019, 194, 226.
23 Wu Y, Liu K. In:Proceedings of the 6th international conference on frp composites in civil engineering, CICE 2012. 2012.
24 Chen L, Liang K, Shan Z. Composite Structures, 2023, 309, 116721.
25 Li Y Q, Chen J F, Yang Z J, et al. Composite Structures, 2021, 275, 114436.
26 Zhang H, He L, Li G. Engineering Failure Analysis, 2015, 56, 39.
27 Cosenza E, Manfredi G, Realfonzo R. Journal of Composites for Construction, 1997, 1(2), 40.
28 Chaallal O, Benmokrane B. Materials and Structures, 1993, 26, 167.
29 Okelo R, Yuan R. Journal of Composites for Construction, 2005, 9(3), 203.
30 Kim D, Sebastian W. Magazine of Concrete Research, 2002, 54, 47.
31 Taha A, Alnahhal W. Composite Structures, 2021, 269, 114034.
32 Zhang B, Zhu H, Cao R, et al. Construction and Building Materials, 2021, 282, 122636.
33 Chang Y, Wang Y, Wang M, et al. Construction and Building Materials, 2021, 307, 124878.
34 Nigro E, Cefarelli G, Bilotta A, et al. Journal of Structural Fire Engineering, 2013, 4, 71.
35 Cai J, Xiong J, Zhou X, et al. In:2011 International Conference on Electric Technology and Civil Engineering. ICETCE 2011-Proceedings. 2011.
36 Akbas T, Celik O, Yalcin C. In:fib symposium 2015:concrete-innovation and design. Copenhagen, Danmark, 2015.
37 Li T, Zhu H, Wang Q, et al. Construction and Building Materials, 2018, 185, 545.
38 Al-Khafaji A, Myers J, Alghazali H. Journal of Cleaner Production, 2020, 282, 124516.
39 Huang L, Chen J, Qu J T, et al. Construction and Building Materials, 2020, 263, 120654.
40 Okelo R. Journal of Aerospace Engineering, 2007, 20(3), 133.
41 Sun W, Zheng Y, Zhou L, et al. Advances in Structural Engineering, 2020, 24, 1110.
42 Wang Z, Zhao X L, Xian G, et al. Construction and Building Materials, 2017, 156, 985.
43 Rolland A, Quiertant M, Khadour A, et al. Construction and Building Materials, 2018, 173, 136.
44 Başaran B, Kalkan I. Composite Structures, 2020, 242, 112185.
45 Bo D, Wang J, Li H, et al. Sensors, 2019, 19, 159.
46 Yang S, Yang C, Huang M, et al. Construction and Building Materials, 2018, 173, 272.
47 Lee Y, Kim M, Kim H C, et al. Journal of Adhesion Science and Technology, 2012, 27, 1.
48 Wei W, Liu F, Xiong Z, et al. Construction and Building Materials, 2019, 227, 116803.
49 Baena M, Torres L, Turon A, et al. Composites Part B, 2009, 40(8), 784.
50 Zhang P, Zhang S, Gao D, et al. Advances in Structural Engineering, 2020, 24, 196.
51 Mosley C, Tureyen A, Frosch R. ACI Structural Journal, 2008, 105, 634.
52 Lin M, Weng C, Xiao H, et al. Buildings, 2023, 14, 38.
53 Kanakubo T, Keisuke Y, Fukuyama H, et al. American Concrete Institute SP, 1993, 138, 767.
54 Fava G, Carvelli V, Pisani M. Composites Part B, 2016, 93, 210.
55 Hossain K. International Journal of Concrete Structures and Materials, 2018, 12(1), 6.
56 He Z, Tian G W. Engineering Structures, 2011, 33, 2943.
57 Mensah C, Wang Z, Bonsu A, et al. Polymers, 2020, 12, 2466.
58 Hossain K, Ametrano D, Lachemi M. Journal of Materials in Civil Engineering, 2014, 26, 449.
59 Hossain K, Ametrano D, Lachemi M. Journal of Building Engineering, 2017, 10, 69.
60 Morales Arias J, Vázquez A, Escobar M. Journal of Composite Materials, 2012, 46, 2271.
61 Sólyom S, Balázs G. In:11th fib International Phd Symposium in Civil Engineering. Tokyo, Japan, 2016.
62 Jiang T Y, Fang Z. Jisuan Lixue Xuebao/Chinese Journal of Computational Mechanics, 2011, 28, 125.
63 Nepomuceno E, Sena-Cruz J, Correia L, et al. Construction and Building Materials, 2021, 287, 123042.
64 Wang Y, Gao Y, Li X, et al. Architecture Engineering and Management, 2019, 1(4), 58 (in Chinese).
王延, 高雁, 李小, 等. 建筑工程与管理, 2019, 1(4), 58.
65 Pan Y, Yan D. Composite Structures, 2020, 261, 113285.
66 Lee J. Key Engineering Materials, 2007, 345, 1217.
67 Davalos J, Chen Y, Ray I. Cement and Concrete Composites, 2008, 30, 722.
68 Belarbi A, Wang H. Journal of composites for construction, 2012, 16(4), 371.
69 Achillides Z, Pilakoutas K. Journal of Composites for Construction, 2004, 8(2), 173.
70 Li W, Cheng S, et al. Acta Materiae Compositae Sinica, 2018, 35(12), 3458.
71 Tong G Q. Experimental study on the bond performance of FRP bars and sea sand concrete. Master's Thesis, Hunan University, 2020 (in Chinese).
佟广权. FRP 筋与海水海砂混凝土粘结性能试验研究. 硕士学位论文, 湖南大学, 2020.
72 Zhu F S, Zhang H X. Journal of Shenyang Jianzhu University. 2006, 22(3), 397 (in Chinese).
朱浮声, 张海霞. 沈阳建筑大学学报, 2006, 22(3), 397.
73 Khozin V, Gizdatullin A. Journal of Physics: Conference Series, 2018, 991, 012044.
74 Tighiouart B, Benmokrane B, Gao D. Construction and Building Materials, 1998, 12(8), 453.
75 Bi Q, Wang H. In:Advances in frp composites in civil engineering, proceedings of the 5th international conference on frp composites in civil engineering (cice 2010), Beijing, China, 2010, pp. 576.
76 Yu N H, Fan J J. Applied Mechanics and Materials, 2014, 488, 774.
77 Xue W, Qiaowei Z, Yang Y, et al. Journal of Reinforced Plastics and Composites, 2014, 33, 895.
78 Jiang S, Ye Y, Fei W. Applied Mechanics and Materials, 2012, 174, 993.
79 Ahmad F, Foret G, Le Roy R. Construction and Building Materials, 2011, 25, 479.
80 Benmokrane B, Tighiouart B, Chaallal O. ACI Materials Journal, 1996, 93, 246.
81 Esfahani M R, Rangan B. ACI Structural Journal, 1998, 95, 96.
82 Wang L, Song Z, Yi J, et al. International Journal of Concrete Structures and Materials, 2019, 13(1), 52.
83 Chinaka E, Shokouhian M, Head M, et al. Civil Engineering Design, 2019, 1(5-6), 148.
84 Chen G W. Experimental study on bond performance of stainless steel reinforcement and sea sand concrete under lateral confinement. Master's Thesis, Dalian University of Technology, 2023 (in Chinese).
陈港文. 侧向约束下不锈钢钢筋-海水海砂混凝土粘结性能试验研究. 硕士学位论文, 大连理工大学, 2023.
85 Choi D U, Chun S C, Ha S S. Engineering Structures, 2012, 34, 303.
86 Tighiouart B, Benmokrane B, Mukhopadhyaya P. Construction and Building Materials, 1999, 13, 383.
87 Ma T, Pan J L, Wei H L. Building Structure, 2013, 43(19), 15 (in Chinese).
马涛, 潘金龙, 魏红雳. 建筑结构, 2013, 43(19), 15.
88 Huang Z H. Study on bond-slip performance of GFRP bars and high-strength PE fiber sea sand concrete. Master's Thesis, Guangdong University of Technology, 2022 (in Chinese).
黄泽浩. GFRP筋与高强度PE纤维海水海砂混凝土粘结滑移性能的研究. 硕士学位论文, 广东工业大学, 2022.
89 Gao J, Fan L Y. Acta Materiae Compositae Sinica. 2022, 39(3), 1194 (in Chinese).
高婧, 范凌云. 复合材料学报, 2022, 39(3), 1194.
90 Shan B, Tong G Q, Liu Q Y. Journal of Architecture and Civil Engineering, 2020, 37(5), 113 (in Chinese).
单波, 佟广权, 刘其元. 建筑科学与工程学报, 2020, 37(5), 113.
91 Liao J, Zeng J J, Bai Y L, et al. Composite Structures, 2021, 115013.
92 Mohamadi A, Oskouei A, Kheyroddin A. Journal of Rehabilitation in Civil Engineering, 2021, 9, 52.
93 Soroushian P, Choi K-B, Park G-H, et al. ACI Materials Journal, 1991, 88, 227.
94 Basaran B, Kalkan I. Composite Structures, 2020, 242, 112185.
95 Siempu R, Pancharathi R. Proceedings of the Institution of Civil Engineers, 2017, 170, 1.
96 Abbas A N, Shihab L A, Yaqoob Y T. Journal of Engineering and Sustainable Development, 2019, 22(2), 1232.
97 Eladawy M, Chen W, Benmokrane B. In:Proceedings of the 8th International Conference on Advanced Composite Materials in Bridges and Structures. Montreal, QC, Canada, 2021, pp.18.
98 Vint L. Investigation of bond properties of glass fibre reinforced polymer (GFRP) bars in concrete under direct tension. Master's Thesis, University of Toronto, 2012.
99 Li W, Zhou M, Liu F, et al. Advances in Civil Engineering, 2021, 2021, 1.
100 Bi Q, Wang Q, Wang H. Advanced Materials Research, 2010, 163, 1251.
101 Saleh N, Ashour A, Lam D, et al. Construction and Building Materials, 2018, 201, 610.
102 Alves J, El-Ragaby A, El-Salakawy E. Journal of Composites for Construction, 2010, 15.
103 De Larrard F, Schaller I, Fuchs J. ACI Materials Journal, 1993, 90, 333.
104 Quayyum S. Bond behaviour of fibre reinforced polymer (FRP) rebars in concrete. Master's Thesis, University of British Columbia, 2010.
105 Xu Z, Chen S, Qian H, et al. Engineering Structures, 2023, 280, 115594.
106 Esfahani M R, Rakhshanimehr M, Mousavi S R. Journal of Composites for Construction, 2013, 17, 314.
107 Sólyom S, Balázs G. Construction and Building Materials, 2020, 264, 119839.
108 Mazaheripour H, Barros J, Sena-Cruz J, et al. Composite Structures, 2013, 95, 202.
109 Lu X Z. Study on FRP-concrete interface behavior. Master's Thesis, Tsinghua University, 2006 (in Chinese).
陆新征. FRP-混凝土界面行为研究. 硕士学位论文, 清华大学, 2006.
110 Rolland A, Argoul P, Benzarti K, et al. Construction and Building Materials, 2020, 231, 117160.
111 Szczech D, Kotynia R. Archives of Civil Engineering, 2018, 64, 243.
112 Ren Y. Academic Journal of Engineering and Technology Science, 2021, 4(5), 15.
113 Pan M, Xu X. DEStech Transactions on Engineering and Technology Research, DOI:10.12783/dtetr/icaenm2017/7810.
114 Zhao D, Zhou Y, Xing F, et al. Engineering Structures, 2021, 243, 112520.
115 Malvar L J. ACI Materials Journal, 1995, 92, 276.
116 Hao Q, Wang Y, He Z, et al. Construction and Building Materials, 2009, 23, 865.
117 Ehsani M R, Saadatmanesh H, Tao S. Journal of composite materials, 1997, 31(14), 1413.
118 Park J S, Lim A R, Kim J, et al. Polymer Composites, 2015, 37, 2098.
119 Wambeke B W, Shield C K. ACI Materials Journal, 2006, 103(1), 11.
120 Xue W C, Liu H J, Wang X H. Journal of Building Structures. 2004, 25(2), 104 (in Chinese).
薛伟辰, 刘华杰, 王小辉. 建筑结构学报, 2004, 25(2), 104.
121 Esfahani M R, Kianoush R, Lachemi M. Canadian Journal of Civil Engineering, 2005, 32, 553.
122 Thakur M, Pandhiani S, Kashyap V, et al. Arabian Journal for Science and Engineering, 2021, 46(5), 4951.
123 Benmokrane B, Masmoudi R. In:Proceedings of the 2nd International Conference on Advanced Composite Materials in Bridges and Structures, Acmbs-ii. Montreal, 1996.
124 Hossain K, Lachemi M. Journal of Materials in Civil Engineering, 2008, 20(9), 608.
[1] 夏益健, 张宇, 张云升, 朱微微, 朱文轩. 磨细凝灰岩制备机制砂混凝土力学性能研究[J]. 材料导报, 2025, 39(9): 24030199-7.
[2] 李琼, 安宝峰, 苏睿, 乔宏霞, 王超群. 废玻璃粉透水混凝土物理性能及复合胶凝体系微观机理研究[J]. 材料导报, 2025, 39(8): 23100186-11.
[3] 王艳, 常天风, 杨子凡, 李伊岚. 超高性能混凝土-普通混凝土界面粘结性能研究[J]. 材料导报, 2025, 39(7): 24020129-6.
[4] 董硕, 郑立森, 史奉伟, 王来, 刘哲. 钢纤维地聚物再生混凝土力学性能及强度指标换算[J]. 材料导报, 2025, 39(7): 24100219-8.
[5] 李克亮, 杜建, 陈爱玖, 韩小燕. 污水管道混凝土微生物腐蚀机理、影响因素和模拟试验方法综述[J]. 材料导报, 2025, 39(7): 23120043-11.
[6] 姜彦杰, 刘浩天, 刘海峰, 车佳玲, 杨维武. 硫酸盐冻融后沙漠砂混凝土单轴受压力学性能试验研究[J]. 材料导报, 2025, 39(7): 23110222-11.
[7] 杜刚, 李亮, 王子晨, 吴俊, 杜修力. 碳纤维混凝土高温冷却后动态压缩性能试验研究[J]. 材料导报, 2025, 39(6): 24010268-6.
[8] 段明翰, 覃源, 李阳, 耿凯强. 寒冷地区腈纶纤维混凝土力学性能及多层感知器神经网络预测[J]. 材料导报, 2025, 39(6): 23110143-9.
[9] 易忠来, 纪文骁, 李化建, 杨志强, 温浩, 王振. 混凝土稳健性评价方法及提升措施研究进展[J]. 材料导报, 2025, 39(6): 24020022-12.
[10] 王耀, 郑新颜, 黄伟, 吴应雄, 黄雅莹, 张恒春, 张峰. 超高性能混凝土-花岗岩石材界面的抗剪性能研究[J]. 材料导报, 2025, 39(6): 24010107-10.
[11] 潘杜, 牛荻涛, 罗大明. 海水海砂混凝土中低合金钢筋钝化膜结构及厚度预测模型[J]. 材料导报, 2025, 39(6): 23120173-8.
[12] 牛荻涛, 杨瑞希, 吕瑶, 孙杏杏, 曹志远, 吴鸿渠. SO2和CO2共同作用下混凝土性能劣化研究[J]. 材料导报, 2025, 39(5): 23120166-7.
[13] 曾鲁平, 乔敏, 赵爽, 王伟, 陈俊松, 朱伯淞, 冉千平, 洪锦祥. 乙烯-醋酸乙烯酯共聚物对喷射混凝土力学强度、渗透性能及水化微观
结构的影响
[J]. 材料导报, 2025, 39(5): 24020003-9.
[14] 翟慕赛, 刘可凡, 陶怡然, 陈建兵. 百年混凝土桥梁方形带肋钢筋力学性能研究[J]. 材料导报, 2025, 39(5): 24090049-6.
[15] 夏晋, 郑宇航, 汪雨青. 基于多尺度模型的混凝土有效电阻率与几何代表尺寸研究[J]. 材料导报, 2025, 39(4): 24020001-7.
[1] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[2] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[3] JIA Zhihong, WENG Yaoyao, DING Lipeng, CHENG Tao, LIU Yingying, LIU Qing. Sn Microalloying for Aluminum Alloys: Strengthening Effects and Mechanisms[J]. Materials Reports, 2017, 31(9): 123 -127 .
[4] WANG Ru, ZHANG Shaokang, WANG Gaoyong. Influence and Mechanism of Mineral Admixtures on Setting and Hardening of Styrene-Butadiene Copolymer/Cement Composite Cementitious Material[J]. Materials Reports, 2017, 31(24): 69 -73 .
[5] DING Yutian, DOU Zhengyi, GAO Yubi, GAO Xin, LI Haifeng, LIU Dexue. In-situ Observation of Solidification Process of GH3625 Superalloy at Different Cooling Rates[J]. Materials Reports, 2017, 31(24): 150 -155 .
[6] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[7] LIU Guoyi, LIU Yuanjun, ZHAO Xiaoming. A Study on Protecting Efficiency to the Radiative Heat of the Outer Fabric for the Fire Proximity Suits[J]. Materials Reports, 2017, 31(22): 116 -120 .
[8] ZHANG Wangxi, WANG Yanzhi, LIANG Baoyan, LI Qiquan, LUO Wei, SUN Changhong, CHENG Xiaozhe, SUN Yuzhou. Review on the Development of Nanodiamonds Used as Functional Materials[J]. Materials Reports, 2018, 32(13): 2183 -2188 .
[9] YANG Fang, ZHANG Long, YU Kun, QI Tianjiao, GUAN Debin. Recent Advances in Humidity Sensitivity of Graphene[J]. Materials Reports, 2018, 32(17): 2940 -2948 .
[10] TIAN Yaqiang, LI Wang, ZHENG Xiaoping, WEI Yingli, SONG Jinying, CHEN Liansheng. Application of Alloy Elements in Quenching and Partitioning Steel:an Overview[J]. Materials Reports, 2019, 33(7): 1109 -1118 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed