Please wait a minute...
材料导报  2026, Vol. 40 Issue (2): 25010201-8    https://doi.org/10.11896/cldb.25010201
  高分子与聚合物基复合材料 |
水老化作用下叠层聚氨酯支座的微相分离机理与力学性能退化研究
于晓涛1, 袁涌1,*, 王思启2
1 华中科技大学土木与水利工程学院,武汉 430074
2 武汉工程大学土木工程与建筑学院,武汉 430205
Study on the Microphase Separation Mechanism and Mechanical Property Degradation of Laminated Polyurethane Bearings Subjected to Water Aging
YU Xiaotao1, YUAN Yong1,*, WANG Siqi2
1 School of Civil and Hydraulic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
2 School of Civil Engineering and Architecture, Wuhan University of Engineering, Wuhan 430205, China
下载:  全 文 ( PDF ) ( 39102KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为探究水老化对聚氨酯隔震支座性能的影响,本研究通过水老化模拟实验,系统探究了水分子对聚氨酯弹性体(PUE)及叠层聚氨酯隔震支座(LPEB)的作用机理与力学性能的影响。结果表明,水分子渗透进入PUE基体后,无定形硬段微区崩塌并产生增塑效应,导致材料硬度与拉伸强度显著降低(分别下降3.4%和52%),而断裂伸长率因链段活动性增强有所提升。随着材料内外水分子浓度梯度趋于平衡,力学性能逐渐稳定。对于LPEB,水分子渗透显著降低了其刚度,竖向刚度与水平等效刚度分别降至未老化状态的10.3%和21.2%;当内外水分子达到动态平衡后,其力学性能亦趋于稳定。研究揭示了水诱导微相分离对聚氨酯基隔震系统长期耐久性的关键作用,可为湿热地区桥梁隔震支座的耐久性设计提供定量参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
于晓涛
袁涌
王思启
关键词:  桥梁工程  叠层聚氨酯支座  水老化  微相分离机理  力学性能    
Abstract: In order to investigate the effect of water aging on the performance of polyurethane seismic isolation bearings, this study systematically investigated the water-aging effects on polyurethane elastomers (PUE) and laminated polyurethane elastomeric bearings(LPEB) through simulative experiments. The results revealed that water molecules permeated the PUE matrix, triggering the collapse of amorphous hard-segment microdomains and inducing a plasticization effect. This microstructural degradation led to a 52% reduction in tensile strength and a 3.4% decline in hardness, while the elongation at break increased due to enhanced segmental mobility. The mechanical properties stabilized as the water concentration gradient between the material’s interior and exterior equilibrated. For LPEB, water infiltration significantly compromised stiffness, with vertical stiffness and horizontal equivalent stiffness dropping to 10.3% and 21.2% of their initial values, respectively. Similar stabilization trends were observed in LPEB mechanical performance once dynamic water equilibrium was achieved. These findings highlight the critical role of water-induced microphase separation in governing the long-term durability of polyurethane-based seismic isolation systems, and provide a quantitative reference for the durability design of bridge seismic isolation bearings in hot and humid regions.
Key words:  bridge engineering    laminated polyurethane bearing    water aging    microphase separation mechanism    mechanical property
出版日期:  2026-01-25      发布日期:  2026-01-27
ZTFLH:  TU533  
基金资助: 国家自然科学基金(51778261)
通讯作者:  *袁涌,博士,华中科技大学土木与水利工程学院教授、博士研究生导师。目前主要从事结构隔震减震控制、信息化结构试验技术、结构防撞等方面的研究工作。yuanyonghuagong@gmail.com   
作者简介:  于晓涛,华中科技大学土木与水利工程学院博士研究生,在袁涌教授的指导下进行研究。目前主要研究领域为结构隔震减震控制、新型隔震材料及柔性电子材料。
引用本文:    
于晓涛, 袁涌, 王思启. 水老化作用下叠层聚氨酯支座的微相分离机理与力学性能退化研究[J]. 材料导报, 2026, 40(2): 25010201-8.
YU Xiaotao, YUAN Yong, WANG Siqi. Study on the Microphase Separation Mechanism and Mechanical Property Degradation of Laminated Polyurethane Bearings Subjected to Water Aging. Materials Reports, 2026, 40(2): 25010201-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.25010201  或          https://www.mater-rep.com/CN/Y2026/V40/I2/25010201
1 Korley L T J, Pate B D, Thomas E L, et al. Polymer, 2006, 47(9), 3073.
2 Wang X Y, Yang Z H, Zhang Y M, et al. Chemical Engineering Journal, 2024, 495, 153466.
3 Sánchez-Adsuar M S, Pastor-Blas M M, Martín-Martínez J M. The Journal of Adhesion, 1998, 67(1-4), 327.
4 He X Y, He J Y, Wang Y J, et al. Materials Reports, 2014, 28(4), 54(in Chinese).
何显运, 何军拥, 王迎军, 等. 材料导报, 2014, 28(4), 54.
5 Liu C W, Shi Y, Ma C, et al. Polymer Materials Science & Engineering, 2021, 37(3), 79(in Chinese).
刘长伟, 史颖, 马驰, 等. 高分子材料科学与工程, 2021, 37(3), 79.
6 Cui B, Wu Q Y, Gu L, et al. Chinese Journal of Polymer Science, 2016, 34(7), 901.
7 Wang Y M, Ma R B, Li H X, et al. Soft Matter, 2022, 18(21), 4090.
8 Zheng X Y, Ren Z Y, Wu Y W, et al. Materials Reports, 2024, 38(6), 273(in Chinese).
郑孝源, 任志英, 吴乙万, 等. 材料导报, 2024, 38(6), 273.
9 Jin X, Li D L, Fu H X, et al. Materials Reports, 2024, 38(S2), 621(in Chinese).
金鑫, 李德利, 付昊轩, 等. 材料导报, 2024, 38(S2), 621.
10 Liu Y H, Wang Y S, Yang X, et al. Materials Reports, 2023, 37(S1), 522(in Chinese).
刘亚豪, 王源升, 杨雪, 等. 材料导报, 2023, 37(S1), 522.
11 Li X R, Li J, Wang J Y, et al. Construction and Building Materials, 2021, 304, 124639.
12 Chen Q, Wang C H, Li Y W, et al. Construction and Building Materials, 2023, 365, 130047.
13 Yuan Y, Wang S Q, Tan P, et al. Construction and Building Materials, 2020, 232, 117227.
14 Wang S Q, Yuan Y, Tan P, et al. Construction and Building Materials, 2020, 265, 120725.
15 Wang S Q, Yuan Y, Tan P, et al. Engineering Structures, 2024, 308, 118044.
16 Yuan Y, Xu X X. Journal of Building Materials, 2023, 26(7), 792(in Chinese).
袁涌, 许笑星. 建筑材料学报, 2023, 26(7), 792.
17 Wang S Q, Tan P, Yuan Y, et al. Engineering Structures, 2023, 294, 116703.
18 Rutkowska M, Krasowska K, Heimowska A, et al. Polymer Degradation and Stability, 2002, 76(2), 233.
19 Xie F W, Zhang T L, Bryant P, et al. Progress in Polymer Science, 2019, 90, 211.
20 Wang R Y, Xu T, Yang Y X, et al. Advanced Materials, 2025, 37(6), 2412083.
21 Wang Z R, Xiong W T, Zhao Y H, et al. Journal of Molecular Structure, 2024, 1297, 136947.
22 Wang Y X, Liang S N, Song N N, et al. Acta Polymerica Sinica, 2023, 54(2), 277(in Chinese).
王义霞, 梁书恩, 宋宁宁, 等. 高分子学报, 2023, 54(2), 277.
23 Kasprzyk P, Głowińska E, Datta J. European Polymer Journal, 2021, 157, 110673.
24 Bandekar J, Klima S. Journal of Molecular Structure, 1991, 263, 45.
25 Tang Q, Gao K. International Journal of Polymer Analysis and Characte-rization, 2017, 22(7), 569.
26 Gojzewski H, van Drongelen M, Imre B, et al. Polymer Testing, 2023, 120, 107961.
27 Mareanukroh M, Hamed G, Eby R. Rubber Chemistry and Technology, 1996, 69(4), 801.
28 Kojio K, Nozaki S, Takahara A, et al. Journal of Polymer Research, 2020, 27(6), 140.
29 Wang Y X, Wang L L, Liu H, et al. Progress in Organic Coatings, 2021, 150, 106000.
30 Li Y J, Gao T, Liu J, et al. Macromolecules, 1992, 25(26), 7365.
31 Wang Y X, Song J Y, Tian Q, et al. Polymer Degradation and Stability, 2023, 214, 110415.
32 Zhao Y M, Zhang B, Liu M Q, et al. Polymer Bulletin, 2024, 37(2), 245(in Chinese).
赵玉梅, 张博, 刘美琴, 等. 高分子通报, 2024, 37(2), 245.
[1] 李凌锋, 司瑶晨, 王瑞达, 刘广华, 赵世贤, 李红霞, 李虹屿. 掺CeO2稀土钽酸盐陶瓷材料的性能研究[J]. 材料导报, 2026, 40(2): 24110106-5.
[2] 孟嘉乐, 卢春成, 王恩会, 张雪良, 石英男, 贾建, 侯新梅. 陶瓷颗粒增强镍基粉末高温合金的研究进展[J]. 材料导报, 2026, 40(2): 25020153-8.
[3] 李亚莎, 吴雕, 王福达, 周朝威, 王桂斌, 董恒. 纳米ZrO2改性聚丙烯热力学性能的分子动力学模拟[J]. 材料导报, 2026, 40(2): 25010080-7.
[4] 黄海旺, 甘雪薇, 孙建平. 速生木材力学性能强化改性研究进展[J]. 材料导报, 2026, 40(2): 24120204-13.
[5] 谢树磊, 欧美琼, 侯坤磊, 王旻, 马颖澈. Mo、W对多晶铸造镍基高温合金组织及应用性能影响的研究进展[J]. 材料导报, 2026, 40(1): 24110085-11.
[6] 曹雷刚, 周权, 黄磊, 杨越, 蔡长宏, 刘园, 崔岩. 时效处理对高体分SiCp/7075Al复合材料力学性能的影响[J]. 材料导报, 2026, 40(1): 25030084-8.
[7] 贾婧, 庄伟彬, 李菁辉, 曹庆, 刘敬福. Ce对原位自生TiB2/6061复合材料显微组织及力学性能的影响[J]. 材料导报, 2026, 40(1): 24070164-7.
[8] 殷子洛, 朱泉峣, 李凯, 张成杰, 周彦鹏, 张雨晴. 聚丙烯纤维增强交联聚苯乙烯的介电及力学性能研究[J]. 材料导报, 2026, 40(1): 25010020-6.
[9] 董洪年, 杨明, 林天一, 陈沛然, 魏婷婷. 针刺密度对碳/碳复合材料力学行为影响的仿真分析[J]. 材料导报, 2025, 39(9): 23120170-6.
[10] 夏益健, 张宇, 张云升, 朱微微, 朱文轩. 磨细凝灰岩制备机制砂混凝土力学性能研究[J]. 材料导报, 2025, 39(9): 24030199-7.
[11] 钱如胜, 叶志波, 张云升, 赵儒泽, 孔德玉, 杨杨, 聂海波. 固碳强化再生粗骨料对其混凝土力学强度及体积稳定性的影响[J]. 材料导报, 2025, 39(9): 24020155-6.
[12] 燕伟, 李驰, 邢渊浩, 高瑜. 循环流化床多元固废粉煤灰基水泥胶砂固碳试验研究[J]. 材料导报, 2025, 39(9): 24010111-7.
[13] 陈港明, 王辉, 黄雪飞. 温轧对低铬FeCrAl合金显微组织及室温和高温力学性能的影响[J]. 材料导报, 2025, 39(9): 24060057-11.
[14] 陈继伟, 朱慧雯, 王海镔, 桑建权, 李艳花, 熊芬, 罗建新. 利用Hofmeister效应一步法制备离子导电耐低温强韧PVA水凝胶[J]. 材料导报, 2025, 39(9): 24050045-7.
[15] 陈永达, 胡智淇, 关岩, 常钧, 陈兵. 羟丙基甲基纤维素与硅烷偶联剂对磷酸镁基钢结构防火涂料性能的影响[J]. 材料导报, 2025, 39(8): 24010194-7.
[1] REN Weixin, CAO Shengfei, DAI Wenjie, XIE Jingli, ZHANG Qi. Progress in Research on Shear Characteristics of Buffer Materials for High-level Radioactive Waste Repositories[J]. Materials Reports, 2025, 39(23): 25010172 -11 .
[2] JIANG Yue, XIAO Mingjun. Research Progress of High-entropy Oxides in Electrode Materials for Sodium-ion Batteries[J]. Materials Reports, 2025, 39(24): 25010122 -9 .
[3] MA Shuo, JIANG Yi, GAO Xiaojian. The Influence Law and Mechanism of C-S-H Seed on the Strength of Steam Curing Cement-based Materials[J]. Materials Reports, 2025, 39(24): 24120059 -7 .
[4] HU Jianlin, ZHAO Yuxuan, ZHOU Yongxiang, LENG Faguang, DU Xiuli. Dynamic Properties of Geopolymer-Cemented Soils and Fitting Analysis of Their Dynamic Constitutive Model[J]. Materials Reports, 2025, 39(24): 25010113 -9 .
[5] . [J]. Materials Reports, 2026, 40(1): 0 .
[6] ZHANG Minxia. Experimental Study on Influencing Factors and Mechanism of Microbial Soil Improvement Effect[J]. Materials Reports, 2026, 40(1): 24120104 -8 .
[7] . [J]. Materials Reports, 2026, 40(2): 0 .
[8] QU Shaopeng, ZHANG Haiqiang, YANG Lujia, LI Xin, HE Dongyu. Research Status and Development Trends of Transport Materials for Offshore Wind to Hydrogen[J]. Materials Reports, 2026, 40(2): 25020154 -11 .
[9] YU Hao, DENG Wenjun, WANG Yongfei, LUO Dawei. Research Progress of Electrolyte for Anode-free Lithium Metal Batteries[J]. Materials Reports, 2026, 40(2): 24110166 -8 .
[10] ZHANG Ping, LU Mingtai, LU Tiantian, YUE Yinghu. Analysis of DC Aging Characteristics of Stable ZnO Varistors Based on Voronoi Network and Finite Element Simulation Model[J]. Materials Reports, 2026, 40(2): 24090232 -9 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed