Study on the Microphase Separation Mechanism and Mechanical Property Degradation of Laminated Polyurethane Bearings Subjected to Water Aging
YU Xiaotao1, YUAN Yong1,*, WANG Siqi2
1 School of Civil and Hydraulic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China 2 School of Civil Engineering and Architecture, Wuhan University of Engineering, Wuhan 430205, China
Abstract: In order to investigate the effect of water aging on the performance of polyurethane seismic isolation bearings, this study systematically investigated the water-aging effects on polyurethane elastomers (PUE) and laminated polyurethane elastomeric bearings(LPEB) through simulative experiments. The results revealed that water molecules permeated the PUE matrix, triggering the collapse of amorphous hard-segment microdomains and inducing a plasticization effect. This microstructural degradation led to a 52% reduction in tensile strength and a 3.4% decline in hardness, while the elongation at break increased due to enhanced segmental mobility. The mechanical properties stabilized as the water concentration gradient between the material’s interior and exterior equilibrated. For LPEB, water infiltration significantly compromised stiffness, with vertical stiffness and horizontal equivalent stiffness dropping to 10.3% and 21.2% of their initial values, respectively. Similar stabilization trends were observed in LPEB mechanical performance once dynamic water equilibrium was achieved. These findings highlight the critical role of water-induced microphase separation in governing the long-term durability of polyurethane-based seismic isolation systems, and provide a quantitative reference for the durability design of bridge seismic isolation bearings in hot and humid regions.
于晓涛, 袁涌, 王思启. 水老化作用下叠层聚氨酯支座的微相分离机理与力学性能退化研究[J]. 材料导报, 2026, 40(2): 25010201-8.
YU Xiaotao, YUAN Yong, WANG Siqi. Study on the Microphase Separation Mechanism and Mechanical Property Degradation of Laminated Polyurethane Bearings Subjected to Water Aging. Materials Reports, 2026, 40(2): 25010201-8.
1 Korley L T J, Pate B D, Thomas E L, et al. Polymer, 2006, 47(9), 3073. 2 Wang X Y, Yang Z H, Zhang Y M, et al. Chemical Engineering Journal, 2024, 495, 153466. 3 Sánchez-Adsuar M S, Pastor-Blas M M, Martín-Martínez J M. The Journal of Adhesion, 1998, 67(1-4), 327. 4 He X Y, He J Y, Wang Y J, et al. Materials Reports, 2014, 28(4), 54(in Chinese). 何显运, 何军拥, 王迎军, 等. 材料导报, 2014, 28(4), 54. 5 Liu C W, Shi Y, Ma C, et al. Polymer Materials Science & Engineering, 2021, 37(3), 79(in Chinese). 刘长伟, 史颖, 马驰, 等. 高分子材料科学与工程, 2021, 37(3), 79. 6 Cui B, Wu Q Y, Gu L, et al. Chinese Journal of Polymer Science, 2016, 34(7), 901. 7 Wang Y M, Ma R B, Li H X, et al. Soft Matter, 2022, 18(21), 4090. 8 Zheng X Y, Ren Z Y, Wu Y W, et al. Materials Reports, 2024, 38(6), 273(in Chinese). 郑孝源, 任志英, 吴乙万, 等. 材料导报, 2024, 38(6), 273. 9 Jin X, Li D L, Fu H X, et al. Materials Reports, 2024, 38(S2), 621(in Chinese). 金鑫, 李德利, 付昊轩, 等. 材料导报, 2024, 38(S2), 621. 10 Liu Y H, Wang Y S, Yang X, et al. Materials Reports, 2023, 37(S1), 522(in Chinese). 刘亚豪, 王源升, 杨雪, 等. 材料导报, 2023, 37(S1), 522. 11 Li X R, Li J, Wang J Y, et al. Construction and Building Materials, 2021, 304, 124639. 12 Chen Q, Wang C H, Li Y W, et al. Construction and Building Materials, 2023, 365, 130047. 13 Yuan Y, Wang S Q, Tan P, et al. Construction and Building Materials, 2020, 232, 117227. 14 Wang S Q, Yuan Y, Tan P, et al. Construction and Building Materials, 2020, 265, 120725. 15 Wang S Q, Yuan Y, Tan P, et al. Engineering Structures, 2024, 308, 118044. 16 Yuan Y, Xu X X. Journal of Building Materials, 2023, 26(7), 792(in Chinese). 袁涌, 许笑星. 建筑材料学报, 2023, 26(7), 792. 17 Wang S Q, Tan P, Yuan Y, et al. Engineering Structures, 2023, 294, 116703. 18 Rutkowska M, Krasowska K, Heimowska A, et al. Polymer Degradation and Stability, 2002, 76(2), 233. 19 Xie F W, Zhang T L, Bryant P, et al. Progress in Polymer Science, 2019, 90, 211. 20 Wang R Y, Xu T, Yang Y X, et al. Advanced Materials, 2025, 37(6), 2412083. 21 Wang Z R, Xiong W T, Zhao Y H, et al. Journal of Molecular Structure, 2024, 1297, 136947. 22 Wang Y X, Liang S N, Song N N, et al. Acta Polymerica Sinica, 2023, 54(2), 277(in Chinese). 王义霞, 梁书恩, 宋宁宁, 等. 高分子学报, 2023, 54(2), 277. 23 Kasprzyk P, Głowińska E, Datta J. European Polymer Journal, 2021, 157, 110673. 24 Bandekar J, Klima S. Journal of Molecular Structure, 1991, 263, 45. 25 Tang Q, Gao K. International Journal of Polymer Analysis and Characte-rization, 2017, 22(7), 569. 26 Gojzewski H, van Drongelen M, Imre B, et al. Polymer Testing, 2023, 120, 107961. 27 Mareanukroh M, Hamed G, Eby R. Rubber Chemistry and Technology, 1996, 69(4), 801. 28 Kojio K, Nozaki S, Takahara A, et al. Journal of Polymer Research, 2020, 27(6), 140. 29 Wang Y X, Wang L L, Liu H, et al. Progress in Organic Coatings, 2021, 150, 106000. 30 Li Y J, Gao T, Liu J, et al. Macromolecules, 1992, 25(26), 7365. 31 Wang Y X, Song J Y, Tian Q, et al. Polymer Degradation and Stability, 2023, 214, 110415. 32 Zhao Y M, Zhang B, Liu M Q, et al. Polymer Bulletin, 2024, 37(2), 245(in Chinese). 赵玉梅, 张博, 刘美琴, 等. 高分子通报, 2024, 37(2), 245.