Please wait a minute...
材料导报  2026, Vol. 40 Issue (2): 25010080-7    https://doi.org/10.11896/cldb.25010080
  高分子与聚合物基复合材料 |
纳米ZrO2改性聚丙烯热力学性能的分子动力学模拟
李亚莎1,2,*, 吴雕1,2, 王福达1, 周朝威1, 王桂斌1, 董恒1
1 三峡大学电气与新能源学院,湖北 宜昌 443002
2 湖北省输电线路工程技术研究中心,湖北 宜昌 443002
Molecular Dynamics Simulation on the Thermodynamic Properties of Polypropylene Modified with Nanometer ZrO2
LI Yasha1,2,*, WU Diao1,2, WANG Fuda1, ZHOU Chaowei1, WANG Guibin1, DONG Heng1
1 School of Electrical and New Energy, China Three Gorges University, Yichang 443002, Hubei, China
2 Hubei Transmission Line Engineering Technology Research Center, Yichang 443002, Hubei, China
下载:  全 文 ( PDF ) ( 8556KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 聚丙烯(PP)因化学稳定性、耐热性和电绝缘性较好在金属化薄膜电容器中被广泛应用,但其在高温下损耗增大,限制了其在高性能储能器件领域的应用。鉴于实验研究的局限性以及纳米掺杂对PP热力学性能研究的不足,本研究开展了分子动力学模拟,对纯PP、不同质量分数ZrO2/PP及含水分子的复合体系进行分析。研究表明:纳米ZrO2掺杂可有效改善PP热力学性能,其中ZrO2(7%)/PP复合体系效果最为显著,在常温下导热率提升29.41%、玻璃化转变温度升高15.28%、力学模量得到提高、自由体积和均方位移下降;且由于纳米ZrO2掺杂占据自由体积限制分子链运动,ZrO2(7%)/PP复合体系削弱作用最强;水分子扩散速率随温度升高而加快,而纳米ZrO2的掺杂可以降低其扩散系数,使其在掺杂体系中的扩散较未掺杂体系减缓。研究结果为纳米ZrO2在金属化薄膜中的应用提供理论支撑,为提升聚丙烯热力学性能提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李亚莎
吴雕
王福达
周朝威
王桂斌
董恒
关键词:  聚丙烯  分子动力学模拟  纳米ZrO2  热力学性能  扩散系数    
Abstract: Polypropylene (PP) is widely used in metallized film capacitors due to its good chemical stability, heat resistance, and electrical insulation properties. However, its loss increases at high temperatures, which limits its application in the field of high-performance energy storage devices. In view of the limitations of experimental research and the insufficiency of research on the thermodynamic properties of PP with nano-doping, this study carried out molecular dynamics simulations. Pure PP, ZrO2/PP composite systems with different mass fractions and composite systems containing water molecules were constructed for analysis. The research shows that nano-ZrO2 doping can effectively improve the thermodynamic properties of PP. Among them, the ZrO2(7%)/PP composite system has the most significant effect. At room temperature, the thermal conductivity was increased by 29.41%, the glass transition temperature was increased by 15.28%, the mechanical modulus was improved, and the free volume and mean square displacement were decreased. Moreover, the doping of nano-ZrO2 occupies the free volume and restricts the movement of molecular chains, and the weakening effect of the ZrO2(7%)/PP composite system is the strongest. The diffusion rate of water molecules increases with the increase of temperature, while the doping of nano-ZrO2 can reduce its diffusion coefficient, making its diffusion in the doped system slower than that in the undoped system. The research results provide theoretical support for the application of nano-ZrO2 in metallized films and a reference for improving the thermodynamic properties of polypropylene.
Key words:  polypropylene    molecular dynamics simulation    nano-ZrO2    thermodynamic property    diffusion coefficient
出版日期:  2026-01-25      发布日期:  2026-01-27
ZTFLH:  TM211  
  TB332  
基金资助: 国家自然科学基金(51577105)
通讯作者:  *李亚莎,三峡大学电气与新能源学院教授、博士研究生导师。目前主要从事电力系统绝缘老化与电磁场数值仿真计算等研究工作。liyasha@ctgu.edu.cn   
作者简介:  吴雕,现为三峡大学电气与新能源学院硕士研究生,在李亚莎教授的指导下进行研究。目前主要研究领域为分子动力学模拟。
引用本文:    
李亚莎, 吴雕, 王福达, 周朝威, 王桂斌, 董恒. 纳米ZrO2改性聚丙烯热力学性能的分子动力学模拟[J]. 材料导报, 2026, 40(2): 25010080-7.
LI Yasha, WU Diao, WANG Fuda, ZHOU Chaowei, WANG Guibin, DONG Heng. Molecular Dynamics Simulation on the Thermodynamic Properties of Polypropylene Modified with Nanometer ZrO2. Materials Reports, 2026, 40(2): 25010080-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.25010080  或          https://www.mater-rep.com/CN/Y2026/V40/I2/25010080
1 Choi S W, Kim H K, Kim Y S. Polymer Compsites, 2024, 45(16), 15228.
2 Li Zhiyuan, Wang Jingran, Xu Zhe, et al. High Voltage Engineering, 2023, 49(7), 2929 (in Chinese).
李志元, 王镜然, 徐哲, 等. 高电压技术, 2023, 49(7), 2929.
3 Wang T, Zhang G, Li D, et al. Journal of Applied Physics, 2020, 128(2), 025101.
4 Chen Mengjiao, Wu Bin, Xia Ru, et al. Journal of Anhui University (Natural Science Edition), 2024, 48(2), 68 (in Chinese).
陈梦娇, 伍斌, 夏茹, 等. 安徽大学学报 (自然科学版), 2024, 48(2), 68.
5 Ismaeilimoghadam S, Shamsian M, Bayat Kashkoli A, et al. Iranian Journal of Wood and Paper Science Research, 2015, 30(WINTER 4), 674.
6 Medellín-Banda D I, Navarro-Rodríguez D, Fernández-Tavizón S, et al. Materials Today Communications, 2019, 21, 100695.
7 Guo Jiang, Xu Mengyi, Li Hui, et al. China Plastics, 2024, 38(3), 44 (in Chinese).
国江, 许梦伊, 李辉, 等. 中国塑料, 2024, 38(3), 44.
8 Ding Mi, Zou Liang, Zhang Li, et al. Transactions of China Electrotechnical Society, 2021, 36(23), 5046(in Chinese).
丁咪, 邹亮, 张黎, 等. 电工技术学报, 2021, 36(23), 5046.
9 Yu Q, Luo M, Chen H, et al. Colloid Polymer Science, 2022, 300(7), 825.
10 Bian J J, Nicola L. Tribology International, 2020, 156, 106837.
11 Zhang J, Xu Q, Gao L, et al. Applied Surface Science, 2020, 511, 145620.
12 Liu Bowen, Lv Fangcheng, Fan Xiaozhou, et al. Polymers, 2022, 14(15), 3134.
13 Wang R, Xiong Y, Yue M, et al. Journal of Cleaner Production, 2020, 276.
14 Huang K, Zeng T T, Shao J D, et al. Laser & Optoelectronics Progress, 2025(1), 56 (in Chinese).
黄凯, 曾婷婷, 邵建达, 等. 激光与光电子学进展, 2025(1), 56.
15 Wu Zhiang. Research on the preparation and mechanical properties of modified polypropylene foaming materials. Master’s Thesis, Ningbo University, China, 2020 (in Chinese).
吴志昂. 改性聚丙烯发泡材料的制备及其力学性能研究. 硕士学位论文, 宁波大学, 2020.
16 Mansouri L, Djebbar A, Khatir S, et al. Journal of Composite Materials, 2019, 53(25), 3629.
17 Zhang Q F, Zhou K, Li K L, et al. Proceedings of the CSEE, 2021, 41(16), 5758 (in Chinese).
张桥峰, 周凯, 李康乐, 等. 中国电机工程学报, 2021, 41(16), 5758.
18 Rong Liping. Molecular simulation of small molecule gases diffusion in common packaging polymers. Master’s Thesis, Shandong University, China, 2011(in Chinese).
荣丽萍. 分子模拟研究小分子气体在常用包装聚合膜中的扩散行为. 硕士学位论文, 山东大学, 2011.
19 Liu Cheng. Research on the properties of lithium hydride and the design method of its protective film. Master’s Thesis, China West Normal University, China, 2022 (in Chinese).
刘城. 氢化锂的性能及其防护膜设计方法研究. 硕士学位论文, 西华师范大学, 2022.
20 Liang Ying, Gao Ting, Liu Chao, et al. Transactions of China Electrotechnical Society, 2020, 35(7), 1575 (in Chinese).
梁英, 高婷, 刘超. 电工技术学报, 2020, 35(7), 1575.
21 Fabian D, Karsten R, Christian S. Journal of Polymer Research, 2022, 29(11), 8.
22 Mashukov I N, Kharaev M A, Kyarov A A, et al. Polymer Science, Series D, 2019, 12(3), 305.
23 Belov A N, Tarasenkov N A, Tebeneva A N, et al. Polymer Science, Series B, 2018, 60(3), 405.
24 Biao J, Qiang F, Ruizhe L, et al. Journal of Physics: Conference Series, 2023, 2433(1), 167.
25 Li Yasha, Tian Ze, Wang Lumin, et al. Materials Reports, 2024, 39(2), 261 (in Chinese).
李亚莎, 田泽, 王璐敏, 等. 材料导报, 2024, 39(2), 261.
26 Fukuyama Y, Senda M, Kawai T, et al. Journal of Thermal Analysis and Calorimetry, 2014, 117(3), 1 397.
27 Fu Yizheng, Liu Yaqing, Zhang Liyan, et al. Journal of Molecular Science, 2009, 25(1), 1 (in Chinese).
付一政, 刘亚青, 张丽燕, 等. 分子科学学报, 2009, 25(1), 1.
28 Fan Peng, Zhou Dengbo, Yan Haijian, et al. High Voltage Technology, 2017, 43(9), 2875 (in Chinese).
凡朋, 周登波, 严海健, 等. 高电压技术, 2017, 43(9), 2875.
29 Li Yasha, Wang Jiamin, Xia Yu, et al. Journal of Composite Materials, 2024, 41(1), 485(in Chinese).
李亚莎, 王佳敏, 夏宇, 等. 复合材料学报, 2024, 41(1), 485.
30 Zhang Xiaoxing, Chen Xiaoyu, Xiao Song, et al. High Voltage Technology, 2018, 44(3), 740 (in Chinese).
张晓星, 陈霄宇, 肖淞, 等. 高电压技术, 2018, 44(3), 740.
31 Shintani T, Shimazu A, Yahagi S, et al. Journal of Applied Polymer Science, 2009, 113(3), 1757.
32 Zhang Tao, Zhou Haohan, Chen Min, et al. Insulating Materials, 2024, 57(2), 38 (in Chinese).
张涛, 周浩翰, 陈敏, 等. 绝缘材料, 2024, 57(2), 38.
33 Jannat A, Junqin S, Jie L, et al. Tribology Transactions, 2021, 64(4), 721.
34 Allen M P, Tildesley D J. Computer simulation of liquids. Oxford:Cla-rendon Press, UK, 1987, pp.9.
35 Liu Yali. Investigation on crystalline morphology and dielectric properties of PP/MMT nanocomposites. Master’s Thesis, Harbin University of Science and Technology, China, 2010 (in Chinese).
刘亚丽. PP/MMT纳米复合材料结晶形态与介电性能研究. 硕士学位论文, 哈尔滨理工大学, 2010.
[1] 孟小丽, 李晓艳, 闫怡红, 李文博. 基于分子动力学的沥青-集料界面动态黏附及失效特性研究[J]. 材料导报, 2025, 39(8): 24010159-8.
[2] 武明生, 侯震, 郑硕鵾, 金志明, 张亚军. 玻纤/聚丙烯直接注射成型及工艺参数影响研究[J]. 材料导报, 2025, 39(6): 24010149-6.
[3] 孙丽, 蓝世航, 王超. 聚丙烯纤维增韧海砂珊瑚混凝土单轴压缩应力-应变本构关系及微观结构[J]. 材料导报, 2025, 39(23): 24070114-9.
[4] 付芳忠, 叶昊辉, 胡金, 姚明灿, 林嘉豪, 谢博毅, 范鹤林, 王瑞祥, 徐志峰. Fe/SiO2质量比对FeO-SiO2-Al2O3体系熔体黏度的影响机制[J]. 材料导报, 2025, 39(22): 24110073-6.
[5] 田壮, 肖官衍, 夏晋, 金伟良. 基于通用有效介质理论的双尺度水泥浆体氯离子扩散系数模型[J]. 材料导报, 2025, 39(22): 24110133-7.
[6] 杨绿峰, 朱恩. 粉煤灰混凝土氯离子扩散系数的广源大样本模型[J]. 材料导报, 2025, 39(21): 24100140-7.
[7] 谷立楠, 王亚男, 隋高阳, 潘正祺, 冯竟竟. 温度对掺加PAM的新拌水泥基材料黏聚性的影响[J]. 材料导报, 2025, 39(20): 24060105-6.
[8] 鞠鹏, 雷宝锋, 姬语洋, 樊恒辉. 聚丙烯纤维对流态固化土流变及力学性能的影响[J]. 材料导报, 2025, 39(20): 24080171-8.
[9] 周祎伟, 段海涛, 李健, 马利欣, 李文轩, 尤锦鸿, 贾丹. 外加磁场对摩擦副材料摩擦磨损及抗腐蚀性能影响的研究进展[J]. 材料导报, 2025, 39(2): 23110090-19.
[10] 耿长建, 杨怡斌, 由宝财, 董会苁, 马海坤. 成分相关的单晶Cr-Co-Ni合金形变机制的分子动力学模拟研究[J]. 材料导报, 2025, 39(2): 23120142-5.
[11] 李亚莎, 田泽, 王璐敏, 庞梦昊, 曾跃凯, 赵光辉. 表面接枝KH550 的石墨烯改性聚二甲基硅氧烷热力学性能的分子动力学模拟[J]. 材料导报, 2025, 39(2): 24010155-6.
[12] 杨建军, 崔雅茹, 王国华, 李小明, 李锋, 陈雷, 杨树峰. PbO-FeOx-CaO-SiO2-ZnO高铅渣还原过程熔渣结构及性能的分子动力学模拟[J]. 材料导报, 2025, 39(19): 24090067-5.
[13] 杨玉龙, 单联飞, 庄智杰, 鲍玖文, 崔祎菲. 海洋潮汐区混凝土氯离子扩散系数相似性分析[J]. 材料导报, 2025, 39(18): 24080008-6.
[14] 侯宇颖, 李涛, 吕寅, 陈刚, 胡夏闽, 唐磊, 杨建明. 粉煤灰和钢渣粉对磷酸钾镁水泥浆体硫酸盐侵蚀行为的影响[J]. 材料导报, 2025, 39(18): 24080025-7.
[15] 于文喜, 颜建伟, 万颖芳, 程娟, 易夕剑, 雷琴, 蒋海云. 聚氯乙烯混合增塑剂分子动力学模拟[J]. 材料导报, 2025, 39(16): 24100039-7.
[1] REN Weixin, CAO Shengfei, DAI Wenjie, XIE Jingli, ZHANG Qi. Progress in Research on Shear Characteristics of Buffer Materials for High-level Radioactive Waste Repositories[J]. Materials Reports, 2025, 39(23): 25010172 -11 .
[2] JIANG Yue, XIAO Mingjun. Research Progress of High-entropy Oxides in Electrode Materials for Sodium-ion Batteries[J]. Materials Reports, 2025, 39(24): 25010122 -9 .
[3] MA Shuo, JIANG Yi, GAO Xiaojian. The Influence Law and Mechanism of C-S-H Seed on the Strength of Steam Curing Cement-based Materials[J]. Materials Reports, 2025, 39(24): 24120059 -7 .
[4] HU Jianlin, ZHAO Yuxuan, ZHOU Yongxiang, LENG Faguang, DU Xiuli. Dynamic Properties of Geopolymer-Cemented Soils and Fitting Analysis of Their Dynamic Constitutive Model[J]. Materials Reports, 2025, 39(24): 25010113 -9 .
[5] . [J]. Materials Reports, 2026, 40(1): 0 .
[6] ZHANG Minxia. Experimental Study on Influencing Factors and Mechanism of Microbial Soil Improvement Effect[J]. Materials Reports, 2026, 40(1): 24120104 -8 .
[7] . [J]. Materials Reports, 2026, 40(2): 0 .
[8] QU Shaopeng, ZHANG Haiqiang, YANG Lujia, LI Xin, HE Dongyu. Research Status and Development Trends of Transport Materials for Offshore Wind to Hydrogen[J]. Materials Reports, 2026, 40(2): 25020154 -11 .
[9] YU Hao, DENG Wenjun, WANG Yongfei, LUO Dawei. Research Progress of Electrolyte for Anode-free Lithium Metal Batteries[J]. Materials Reports, 2026, 40(2): 24110166 -8 .
[10] ZHANG Ping, LU Mingtai, LU Tiantian, YUE Yinghu. Analysis of DC Aging Characteristics of Stable ZnO Varistors Based on Voronoi Network and Finite Element Simulation Model[J]. Materials Reports, 2026, 40(2): 24090232 -9 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed